Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 88(16): 8743-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850736

RESUMEN

UNLABELLED: Sequence differences in the EBNA-2 protein mediate the superior ability of type 1 Epstein-Barr virus (EBV) to transform human B cells into lymphoblastoid cell lines compared to that of type 2 EBV. Here we show that changing a single amino acid (S442D) from serine in type 2 EBNA-2 to the aspartate found in type 1 EBNA-2 confers a type 1 growth phenotype in a lymphoblastoid cell line growth maintenance assay. This amino acid lies in the transactivation domain of EBNA-2, and the S442D change increases activity in a transactivation domain assay. The superior growth properties of type 1 EBNA-2 correlate with the greater induction of EBV LMP-1 and about 10 cell genes, including CXCR7. In chromatin immunoprecipitation assays, type 1 EBNA-2 is shown to associate more strongly with EBNA-2 binding sites near the LMP-1 and CXCR7 genes. Unbiased motif searching of the EBNA-2 binding regions of the differentially regulated cell genes identified an ETS-interferon regulatory factor composite element motif that closely corresponds to the sequences known to mediate EBNA-2 regulation of the LMP-1 promoter. It appears that the superior induction by type 1 EBNA-2 of the cell genes contributing to cell growth is due to their being regulated in a manner different from that for most EBNA-2-responsive genes and in a way similar to that for the LMP-1 gene. IMPORTANCE: The EBNA-2 transcription factor plays a key role in B cell transformation by EBV and defines the two EBV types. Here we identify a single amino acid (Ser in type 1 EBV, Asp in type 2 EBV) of EBNA-2 that determines the superior ability of type 1 EBNA-2 to induce a key group of cell genes and the EBV LMP-1 gene, which mediate the growth advantage of B cells infected with type 1 EBV. The EBNA-2 binding sites in these cell genes have a sequence motif similar to the sequence known to mediate regulation of the EBV LMP-1 promoter. Further detailed analysis of transactivation and promoter binding provides new insight into the physiological regulation of cell genes by EBNA-2.


Asunto(s)
Aminoácidos/metabolismo , Linfocitos B/metabolismo , Linfocitos B/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas Virales/metabolismo , Aminoácidos/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Línea Celular , Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Genes Virales/genética , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética , Receptores CXCR/genética , Receptores CXCR/metabolismo , Serina/genética , Serina/metabolismo , Activación Transcripcional/genética , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/genética
2.
Pathogens ; 1(2): 156-74, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-25436768

RESUMEN

Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA