Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Mol Med ; 24(13): 7301-7312, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32463592

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, is extensively expressed in the epithelial cells of various tissues and organs. Accumulating evidence indicates that aberrant expression or mutation of CFTR is related to carcinoma development. Malignant gliomas are the most common and aggressive intracranial tumours; however, the role of CFTR in the development of malignant gliomas is unclear. Here, we report that CFTR is expressed in malignant glioma cell lines. Suppression of CFTR channel function or knockdown of CFTR suppresses glioma cell viability whereas overexpression of CFTR promotes it. Additionally, overexpression of CFTR suppresses apoptosis and promotes glioma progression in both subcutaneous and orthotopic xenograft models. Cystic fibrosis transmembrane conductance regulator activates Akt/Bcl2 pathway, and suppression of PI3K/Akt pathway abolishes CFTR overexpression-induced up-regulation of Bcl2 (MK-2206 and LY294002) and cell viability (MK-2206). More importantly, the protein expression level of CFTR is significantly increased in glioblastoma patient samples. Altogether, our study has revealed a mechanism by which CFTR promotes glioma progression via up-regulation of Akt/Bcl2-mediated anti-apoptotic pathway, which warrants future studies into the potential of using CFTR as a therapeutic target for glioma treatment.


Asunto(s)
Apoptosis/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Glioma/genética , Glioma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Regulación hacia Arriba/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Desnudos
2.
Cancer Cell Int ; 18: 156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337838

RESUMEN

BACKGROUND: As newly identified Wnt enhancer, R-spondin gene family members have been linked to various cancers; however, their role in isocitrate dehydrogenase-wildtype subtype of human glioblastoma (GBM) cells remains unknown. METHODS: Human U87 and U251 cell lines were used to perform the experiments. GBM stem-like cells were enriched in stem cell growth media and induced to differentiate using retinoid acid or growth factor deprivation. Wnthigh and Wntlow subpopulations were isolated and evaluated by MTS, sphere formation, transwell migration and xenograft formation assays. RESULTS: R-spondin 2 but not R-spondin 3 potentiates Wnt/ß-catenin signaling in GBM cell lines. While R-spondin 2 does not affect cell growth, it induces the expression of pluripotent stem cell markers in combination with Wnt3A. GBM stem-like cells are endowed with intrinsic high activity of ß-catenin signaling, which can be further intensified by R-spondin 2. In addition, R-spondin2 promotes stem cell self-renewal and suppresses retinoid acid- or growth factor deprivation-induced differentiation, indicating R-spondin 2 maintains stem cell traits in GBM. On the other hand, we identify subpopulations of GBM cells that show distinctive responsiveness to Wnt/ß-catenin signaling. Interestingly, Wnthigh and Wntlow cells display distinctive biologic properties. Moreover, Wnthigh cell-inoculated xenografts exhibit enhanced tumorigenicity and increased expression levels of R-spondin 2 compared to Wntlow cell-inoculated xenografts. CONCLUSION: Our study reveals a novel regulatory mechanisms underlying the over-activation of ß-catenin-mediated signaling in the pathogenesis of GBM.

3.
Blood ; 125(15): 2386-96, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25710880

RESUMEN

Acute myeloid leukemia (AML) is one of the most common acute leukemias in adults and children, yet significant numbers of patients relapse and die of disease. In this study, we identify the dependence of AML blasts on arginine for proliferation. We show that AML blasts constitutively express the arginine transporters CAT-1 and CAT-2B, and that the majority of newly diagnosed patients' blasts have deficiencies in the arginine-recycling pathway enzymes argininosuccinate synthase and ornithine transcarbamylase, making them arginine auxotrophic. BCT-100, a pegylated human recombinant arginase, leads to a rapid depletion in extracellular and intracellular arginine concentrations, resulting in arrest of AML blast proliferation and a reduction in AML engraftment in vivo. BCT-100 as a single agent causes significant death of AML blasts from adults and children, and acts synergistically in combination with cytarabine. Using RNA sequencing, 20 further candidate genes which correlated with resistance have been identified. Thus, AML blasts are dependent on arginine for survival and proliferation, as well as depletion of arginine with BCT-100 of clinical value in the treatment of AML.


Asunto(s)
Arginasa/uso terapéutico , Arginina/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Adolescente , Anciano , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Niño , Preescolar , Citarabina/uso terapéutico , Terapia Enzimática , Femenino , Humanos , Lactante , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones SCID , Persona de Mediana Edad , Proteínas Recombinantes/uso terapéutico , Células Tumorales Cultivadas , Adulto Joven
4.
Respir Res ; 18(1): 80, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464918

RESUMEN

BACKGROUND: Malignant pleural mesothelioma (MPM) is a difficult-to-treat global disease. Pegylated arginase (BCT-100) has recently shown anti-tumor effects in hepatocellular carcinoma, acute myeloid leukemia and melanoma. This study aims to investigate the effects of PEG-BCT-100 in MPM. METHODS: A panel of 5 mesothelioma cell lines (H28, 211H, H226, H2052 and H2452) was used to study the in vitro effects of BCT-100 by crystal violet staining. The in vivo effects of BCT-100 were studied using 211H and H226 nude mice xenografts. Protein expression (argininosuccinate synthetase, ornithine transcarbamylase, cleaved PARP, cleaved caspase 3, cyclins (A2, D3, E1 and H), CDK4 and Ki67) and arginine concentration were evaluated by Western blot and ELISA respectively. Cellular localization of BCT-100 was detected by immunohistochemistry and immunoflorescence. TUNEL assay was used to identify cellular apoptotic events. RESULTS: Argininosuccinate synthetase was expressed in H28, H226, and H2452 cells as well as 211H and H266 xenografts. Ornithine transcarbamylase was undetectable in all cell lines and xenograft models. BCT-100 reduced in vitro cell viability (IC50 values at 13-24 mU/ml, 72 h) across different cell lines and suppressed tumor growth in both 211H and H226 xenograft models. BCT-100 (60 mg/kg) significantly suppressed tumor growth (p < 0.01) with prolonged median survival (p < 0.01) in both xenograft models. Combining BCT-100 with pemetrexed or cisplatin conferred no additional benefits over single agents. Serum and intratumoral arginine levels were effectively decreased by BCT-100, associated with cytosolic accumulation of BCT-100 within tumor cells. Apoptosis (PARP cleavage in 211H xenografts; Bcl-2 downregulation, and cleavage of PARP and caspase 3 in H226 xenografts; positive TUNEL staining in both) and G1 arrest (downregulation of cyclin A2, D3, E1 and CDK4 in 211H xenografts; suppression of cyclin A2, E1, H and CDK4 in H226 xenografts) were evident with BCT-100 treatment. Furthermore, proliferative factor Ki67 was downregulated in BCT-100 treatments arms. CONCLUSIONS: BCT-100 suppressed tumor growth with prolonged median survival partially mediated by intratumoral arginine depletion resulting in apoptosis and G1 arrest in mesothelioma xenograft models. The findings provide scientific evidence to support further clinical development of BCT-100 in treatment of MPM.


Asunto(s)
Apoptosis/efectos de los fármacos , Arginasa/administración & dosificación , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Neoplasias Pleurales/tratamiento farmacológico , Neoplasias Pleurales/patología , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Mesotelioma Maligno , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Polietilenglicoles/química , Resultado del Tratamiento
5.
Biochim Biophys Acta ; 1843(6): 1162-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24607566

RESUMEN

PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Calcio/farmacología , Regulación del Desarrollo de la Expresión Génica , Hidrolasas/metabolismo , Células-Madre Neurales/patología , Transducción de Señal/efectos de los fármacos , Factor Inductor de la Apoptosis/genética , Western Blotting , Núcleo Celular , Proliferación Celular , Humanos , Hidrolasas/antagonistas & inhibidores , Hidrolasas/genética , Técnicas para Inmunoenzimas , Inmunoprecipitación , Hibridación in Situ , Células-Madre Neurales/metabolismo , Arginina Deiminasa Proteína-Tipo 2 , Desiminasas de la Arginina Proteica , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Theranostics ; 12(1): 143-166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34987639

RESUMEN

Aims: Hypoxic-ischaemic encephalopathy (HIE) is one of the most serious complications in neonates and infants. Mesenchymal stromal cell (MSC)-based therapy is emerging as a promising treatment avenue for HIE. However, despite its enormous potential, the clinical application of MSCs is limited by cell heterogeneity, low isolation efficiency and unpredictable effectiveness. In this study, we examined the therapeutic effects and underlying mechanisms of human pluripotent stem cell-derived ectomesenchymal stromal cells (hPSC-EMSCs) in a rat model of HIE. Methods: hPSC-EMSCs were induced from either human embryonic stem cells or induced pluripotent stem cells. Stem cells or the conditioned medium (CM) derived from stem cells were delivered intracranially or intranasally to neonatal rats with HIE. Human umbilical cord-derived MSCs (hUC-MSCs) were used as the therapeutic comparison control and phosphate-buffered saline (PBS) was used as a negative control. Lesion size, apoptosis, neurogenesis, astrogliosis and microgliosis were evaluated. The rotarod test and Morris water maze were used to determine brain functional recovery. The PC-12 cell line, rat primary cortical neurons and neural progenitor cells were used to evaluate neurite outgrowth and the neuroprotective and neurogenesis effects of hPSC-EMSCs/hUC-MSCs. RNA-seq and enzyme-linked immunosorbent assays were used to determine the secretory factors that were differentially expressed between hPSC-EMSCs and hUC-MSCs. The activation and suppression of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) were characterised using western blotting and immunofluorescent staining. Results: hPSC-EMSCs showed a higher neuroprotective potential than hUC-MSCs, as demonstrated by a more significant reduction in lesion size and apoptosis in the rat brain following hypoxia-ischaemia (HI). Compared with PBS treatment, hPSC-EMSCs promoted endogenous neurogenesis and alleviated astrogliosis and microgliosis. hPSC-EMSCs were more effective than hUC-MSCs. hPSC-EMSCs achieved a greater recovery of brain function than hUC-MSCs and PBS in rats with HIE. CM derived from hPSC-EMSCs had neuroprotective and neurorestorative effects in vitro through anti-apoptotic and neurite outgrowth- and neurogenesis-promoting effects. Direct comparisons between hPSC-EMSCs and hUC-MSCs revealed the significant enrichment of a group of secretory factors in hPSC-EMSCs, including nerve growth factor (NGF), platelet-derived growth factor-AA and transforming growth factor-ß2, which are involved in neurogenesis, synaptic transmission and neurotransmitter transport, respectively. Mechanistically, the CM derived from hPSC-EMSCs was found to potentiate NGF-induced neurite outgrowth and the neuronal differentiation of NPCs via the ERK/CREB pathway. Suppression of ERK or CREB abolished CM-potentiated neuritogenesis and neuronal differentiation. Finally, intranasal delivery of the CM derived from hPSC-EMSCs significantly reduced brain lesion size, promoted endogenous neurogenesis, mitigated inflammatory responses and improved functional recovery in rats with HIE. Conclusion: hPSC-EMSCs promote functional recovery after HI through multifaceted neuromodulatory activities via paracrine/trophic mechanisms. We propose the use of hPSC-EMSCs for the treatment of HIE, as they offer an excellent unlimited cellular source of MSCs.


Asunto(s)
Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Persona de Mediana Edad , Células PC-3 , Cultivo Primario de Células , Ratas
7.
Stem Cell Res Ther ; 11(1): 279, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660632

RESUMEN

BACKGROUND: Stem cell senescence has been proposed as one of the major drivers of aging, and MSC senescence contributes to aging-related diseases. Activation of mTORC1 pathway and heterochromatin organization have been characterized as two characteristics of senescent cells; however, whether mTORC1 pathway interacts with heterochromatin organization and contributes to MSC senescence remains unknown. In this study, we investigated the interaction between heterochromatin organization and mTORC1/p70S6K pathway in stress-induced MSC senescence. METHODS: The stress-induced senescence models were established in human umbilical cord-derived MSCs by doxorubicin (Dox) or H2O2. Cellular senescence was evaluated by ß-Gal activity, upregulation of cell cycle suppressor genes, and expression of SASP. Activation of heterochromatin organization and mTORC1 pathway was determined by Western blot and immunofluorescent staining. A D-galactose (D-Gal)-induced aging model was established in rats to evaluate the crosstalk between heterochromatin and mTORC1 pathway in vivo. RESULTS: We found that heterochromatin organization was provoked at the early stage of Dox- or H2O2-induced senescence. Disruption of heterochromatin organization led to robust DNA damage response and exacerbated cellular senescence. Suppression of mTORC1/p70S6K pathway by either rapamycin or p70S6K knockdown promoted heterochromatin organization and ameliorated Dox- or H2O2-induced DNA damage and senescence. In contrast, direct activation of mTORC1 by MHY1485 impaired heterochromatin organization and aggravated stress-induced senescence. Moreover, concomitant activation of mTORC1 pathway and heterochromatin organization was found in D-galactose-induced osteoporosis model in rats. Rapamycin alleviated cellular senescence and promoted heterochromatin organization in BMSCs derived from D-galactose-treated rats. CONCLUSIONS: Altogether, our study indicates the existence of a complex interplay between the mTORC1/p70S6K pathway and the heterochromatin organization during stress-induced MSC senescence, with important implications for the understanding of aging as well as for its prevention and treatment.


Asunto(s)
Heterocromatina , Proteínas Quinasas S6 Ribosómicas 70-kDa , Animales , Senescencia Celular , Heterocromatina/genética , Peróxido de Hidrógeno , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratas
8.
J Orthop Translat ; 23: 38-52, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32489859

RESUMEN

Sarcopenia is characterized by loss of muscle and reduction in muscle strength that contributes to higher mortality rate and increased incidence of fall and hospitalization in the elderly. Mitochondria dysfunction and age-associated inflammation in muscle are two of the main attributors to sarcopenia progression. Recent clinical trials on sarcopenia therapies such as physical exercise, nutraceutical, and pharmaceutical interventions have revealed that exercise is the only effective strategy shown to alleviate sarcopenia. Unlike nutraceutical and pharmaceutical interventions that showed controversial results in sarcopenia alleviation, exercise was found to restore mitochondria homeostasis and dampen inflammatory responses via a complex exchange of myokines and osteokines signalling between muscle and bone. However, as exercise have limited benefit to immobile patients, the use of stem cells and their secretome are being suggested to be novel therapeutics that can be catered to a larger patient population owing to their mitochondria restoration effects and immune modulatory abilities. As such, we reviewed the potential pros and cons associated with various stem cell types/secretome in sarcopenia treatment and the regulatory and production barriers that need to be overcome to translate such novel therapeutic agents into bedside application. Translational potential: This review summarizes the causes underlying sarcopenia from the perspective of mitochondria dysfunction and age-associated inflammation, and the progress of clinical trials for the treatment of sarcopenia. We also propose therapeutic potential of stem cell therapy and bioactive secretome for sarcopenia.

9.
Oncogenesis ; 8(3): 18, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808864

RESUMEN

Depletion of arginine induced by PEGylated arginase 1 (ARG1) (BCT-100) has shown anticancer effects in arginine auxotrophic cancers that lack argininosuccinate synthetase (ASS1) and ornithine transcarbamylase (OTC). High levels of endogenous arginase 2 (ARG2) have been previously reported in human lung cancers. Although a high-ARG2 level neither causes immunosuppression nor affects disease progression, it may theoretically affect the efficacy of PEGylated ARG1 treatment. ARG2 was shown to be highly expressed in H520 squamous cell lung carcinoma (lung SCC) xenografts but undetectable in SK-MES-1 and SW900 lung SCC xenografts. We propose that high-endogenous expression of ARG2 could impede the anti-tumor effect of PEGylated ARG1 in lung SCC. The in vivo effect of PEGylated ARG1 was investigated using three xenograft models of lung SCC. PEGylated ARG1 (60 mg/kg) suppressed tumor growth in SK-MES-1 and SW900 but not H520 xenografts. ASS1 was expressed in SK-MES-1 and SW900 xenografts while OTC expression remained low in all xenografts. A high-endogenous ARG2 level was detected only in H520 xenografts. Serum arginine level was decreased significantly by PEGylated ARG1 in all xenografts. Nonetheless intratumoral arginine level was decreased by PEGylated ARG1 in SK-MES-1 and SW900, not H520 xenografts. In SK-MES-1 xenografts, PEGylated ARG1 treatment induced G1 arrest, downregulation of Ki67 and Mcl-1 and activation of apoptosis. In SW900 xenografts, upregulation of Bim and activation of apoptosis were observed upon PEGylated ARG1 treatment. Silencing of ARG2 re-sensitized the H520 xenografts to PEGylated ARG1 treatment, partially mediated through arginine depletion via G1 arrest and apoptosis. PEGylated ARG1 treatment (BCT-100) was effective in lung SCC xenografts with low-endogenous levels of ASS1/OTC and ARG2. High-endogenous ARG2 expression may cause resistance to PEGylated ARG1 treatment in lung SCC xenografts. ARG2 may serve as a third predictive biomarker in PEGylated ARG1 treatment in lung SCC.

10.
Oncol Rep ; 40(4): 1994-2004, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30066894

RESUMEN

Arginine depletion has shown anticancer effects among arginine auxotrophic cancers. An anti­proliferative effect of pegylated arginase (BCT­100) has been shown in acute myeloid leukaemia, hepatocellular carcinoma and mesothelioma. The aim of the present study was to evaluate the effect of BCT­100 in lung adenocarcinoma. A panel of lung adenocarcinoma cell lines and xenograft models were used to investigate the effect of BCT­100. Protein expression, arginine level, putrescine level, spermidine level and apoptosis were analyzed by western blotting, ELISA, high performance liquid chromatography, dot blot and TUNEL assay, respectively. BCT­100 converts arginine to ornithine. BCT­100 reduced in vitro cell viability across different lung adenocarcinoma cell lines and suppressed tumour growth in an HCC4006 xenograft, while paradoxical growth stimulation was observed in H358, HCC827, H1650 and H1975 xenografts. Upon BCT­100 treatment, ornithine decarboxylase 1 (ODC1) was induced in two solid tumour xenografts (H1650 and H1975). It was postulated that the accumulated ornithine could be channeled via ODC1 to produce polyamines that promoted tumour growth. The action of an ODC1 inhibitor (α­difluoromethylornithine, DFMO) was studied in the restoration of the anticancer effects of BCT­100 in lung adenocarcinoma. In both H1650 and H1975 xenografts, a combination of DFMO and BCT­100 significantly suppressed tumour growth, resulting in doubled median survival compared with the control. Putrescine was decreased in almost all treatment arms in the H1650, H1975 and HCC4006 xenografts. Nonetheless spermidine was reduced only following DFMO/BCT­100 treatment in the H1650 and H1975 xenografts. Apoptosis was enhanced in the combined treatment arm in both H1650 and H1975 xenografts. In the HCC4006 xenograft, addition of DFMO did not alter the tumour suppressive effect of BCT­100. In conclusion, inhibition of ODC1 by DFMO was crucial in facilitating BCT­100 treatment in lung adenocarcinoma that was partially mediated by depleting arginine and polyamines with consequent apoptosis.


Asunto(s)
Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Arginasa/administración & dosificación , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/patología , Ornitina Descarboxilasa/química , Polietilenglicoles/química , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Animales , Arginina/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ornitina/metabolismo , Ornitina Descarboxilasa/metabolismo , Inhibidores de la Ornitina Descarboxilasa/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
PLoS One ; 8(10): e77053, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204733

RESUMEN

Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-), or p53(-/-)), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Bencimidazoles/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales/métodos , Glioblastoma/enzimología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Indanos/farmacología , Ratones , Ratones Noqueados , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Pteridinas/farmacología , Pirazoles/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Tiofenos/farmacología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA