Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 28(15): 155603, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28211792

RESUMEN

Fe3O4 has been regarded as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity, low cost, and environmental friendliness. In this work, we present a one-pot reducing-composite-hydroxide-mediated (R-CHM) method to synthesize in situ carbon-coated Fe3O4 (Fe3O4@C) at 280 °C using Fe(NO3)3 · 9H2O and PEG800 as raw materials and NaOH/KOH as the medium. The as-prepared Fe3O4 octahedron has an average size of 100 nm in diameter, covered by a carbon layer with a thickness of 3 nm, as revealed by FESEM and HRTEM images. When used as anode materials in LIBs, Fe3O4@C exhibited an outstanding rate capability (1006, 918, 825, 737, 622, 455 and 317 mAh g-1 at 0.1, 0.2, 0.5, 0.8, 1.0, 1.5 and 2.0 A g-1). Moreover, it presented an excellent cycling stability, with a retained capacity of 261 mAh g-1 after 800 cycles under an extremely high specific current density of 2.0 A g-1. Such results indicate that Fe3O4@C can provide a new route into the development of long-life electrodes for future rechargeable LIBs. Importantly, the R-CHM developed in our work can be extended for the synthesis of other carbon-coated electrodes for LIBs and functional nanostructures for broader applications.

2.
Chemistry ; 21(50): 18248-57, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26515375

RESUMEN

MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100-150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m(2) g(-1) . The MoS2 @C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2 . The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g(-1) and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g(-1) , as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2 @C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2 , and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass- and charge-transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge-transfer reaction and the diffusivity of the MoS2 @C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li-ion battery market.

3.
Chem Soc Rev ; 42(7): 3127-71, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23455759

RESUMEN

Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport properties, altered physical properties, and confinement effects resulting from the nanoscale dimensions, and have been extensively studied for energy-related applications such as solar cells, catalysts, thermoelectrics, lithium ion batteries, supercapacitors, and hydrogen storage systems. This review focuses on a few select aspects regarding these topics, demonstrating that nanostructured materials benefit these applications by (1) providing a large surface area to boost the electrochemical reaction or molecular adsorption occurring at the solid-liquid or solid-gas interface, (2) generating optical effects to improve optical absorption in solar cells, and (3) giving rise to high crystallinity and/or porous structure to facilitate the electron or ion transport and electrolyte diffusion, so as to ensure the electrochemical process occurs with high efficiency. It is emphasized that, to further enhance the capability of nanostructured materials for energy conversion and storage, new mechanisms and structures are anticipated. In addition to highlighting the obvious advantages of nanostructured materials, the limitations and challenges of nanostructured materials while being used for solar cells, lithium ion batteries, supercapacitors, and hydrogen storage systems have also been addressed in this review.

4.
Small ; 9(22): 3880-6, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-23650258

RESUMEN

An additive and template free process is developed for the facile synthesis of VO2 (B) mesocrystals via the solvothermal reaction of oxalic acid and vanadium pentoxide. The six-armed star architectures are composed of stacked nanosheets homoepitaxially oriented along the [100] crystallographic register with respect to one another, as confirmed by means of selected area electron diffraction and electron microscopy. It is proposed that the mesocrystal formation mechanism proceeds through classical as well as non-classical crystallization processes, and is possibly facilitated or promoted by the presence of a reducing/chelating agent. The synthesized VO2 (B) mesocrystals are tested as a cathodic electrode material for lithium-ion batteries, and show good capacity at discharge rates ranging from 150-1500 mA g(-1) and a cyclic stability of 195 mA h g(-1) over fifty cycles. The superb electrochemical performance of the VO2 (B) mesocrystals is attributed to the porous and oriented superstructure that ensures large surface area for redox reaction and short diffusion distances. The mesocrystalline structure ensures that all the surfaces are in intimate contact with the electrolyte, and that lithium-ion intercalation occurs uniformly throughout the entire electrode. The exposed (100) facets also lead to fast lithium intercalation, and the homoepitaxial stacking of nanosheets offers a strong inner-sheet binding force that leads to better accommodation of the strain induced during cycling, thus circumventing the capacity fading issues typically associated with VO2 (B) electrodes.

5.
Nano Lett ; 12(11): 5673-8, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23092272

RESUMEN

Because of its extreme safety and outstanding cycle life, Li(4)Ti(5)O(12) has been regarded as one of the most promising anode materials for next-generation high-power lithium-ion batteries. Nevertheless, Li(4)Ti(5)O(12) suffers from poor electronic conductivity. Here, we develop a novel strategy for the fabrication of Li(4)Ti(5)O(12)/carbon core-shell electrodes using metal oxyacetyl acetonate as titania and single-source carbon. Importantly, this novel approach is simple and general, with which we have successfully produce nanosized particles of an olivine-type LiMPO(4) (M = Fe, Mn, and Co) core with a uniform carbon shell, one of the leading cathode materials for lithium-ion batteries. Metal acetylacetonates first decompose with carbon coating the particles, which is followed by a solid state reaction in the limited reaction area inside the carbon shell to produce the LTO/C (LMPO(4)/C) core-shell nanostructure. The optimum design of the core-shell nanostructures permits fast kinetics for both transported Li(+) ions and electrons, enabling high-power performance.

6.
Chem Asian J ; 10(8): 1608-17, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26009872

RESUMEN

Simple defect modification is a powerful means to improve material intercalation capabilities. It has received considerable interest lately as it can directly alter both the chemical and structural characteristics; techniques of note include cationic disordering, amorphization, doping, partial cation reduction, and manipulation of intrinsic defects. Defects can reduce the stress and the electrostatic repulsion between adjacent oxygen layers, which can directly alter the migration energy and diffusion barriers the alkali ion must overcome during intercalation. Complementary to experimental observations, theoretical predictions are paramount to developing a detailed understanding of material-defect chemistry. This focus review aims to demonstrate that the optimized design of stable intercalation compounds could lead to substantial improvements in energy-storage applications by overcoming intrinsic limitations.

7.
Nanoscale ; 7(7): 3173-80, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25615827

RESUMEN

A new approach by inserting a layer of ZnSe QDs was studied to enhance the adsorption of CdS/CdSe QDs resulting in much improved power conversion efficiency. ZnSe, CdS and CdSe QDs were sequentially assembled on a nanocrystalline TiO2 film to prepare a ZnSe/CdS/CdSe sensitized photoelectrode for QD-sensitized solar cell (QDSSC) applications. The results show that the performance of QDSSCs is strongly dependent on the order of the QDs with respect to TiO2. The pre-assembled ZnSe QD layer acts as a seed layer in the subsequent SILAR process, inducing both the nucleation and growth of CdS QDs, whereas CdS and CdSe QDs have a complementary effect in light harvesting. In the cascade structure of TiO2/ZnSe/CdS/CdSe electrode, a high efficiency of 4.94% and a long electron lifetime of 87.4 ms were achieved, which can be attributed to the following factors: the higher intensity and red shift of light absorption in 400-700 nm range increase the electron concentration in TiO2 substrate sensitized by ZnSe/CdS/CdSe compared to the others, which directly accelerate electron transport in TiO2 and their transfer to FTO glass; the re-organization of energy levels among ZnSe, CdS and CdSe forms a stepwise structure of band-edge levels, which is advantageous to the electron injection and hole recovery of QDs.

8.
ACS Appl Mater Interfaces ; 6(6): 4466-72, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24580891

RESUMEN

ZnO nanorods (NRs) and nanosheets (NSs) were fabricated by adjusting the growth orientation of ZnO crystals in the reaction solution, respectively. The thin ZnO NSs were slowly assembled on the surface of NRs to form a hierarchically structured NR-NS photoelectrode for constructing CdS/CdSe quantum-dot-sensitized solar cells (QDSCs). This hierarchical structure had two advantages in improving the power conversion efficiency (PCE) of the solar cells: (a) it increased the surface area and modified the surface profile of the ZnO NRs to aid in harvesting more quantum dots, which leads to a high short-current density (Jsc); (b) it facilitated transportation of the electrons in this compact structure to reduce the charge recombination, which led to enhancement of the open-circuit voltage (Voc) and fill factor (FF). As a result, the QDSC assembled with the hierarchical NR-NS photoelectrode exhibited a high PCE of 3.28%, which is twice as much as that of the NR photoelectrode (1.37%).

9.
Nanoscale ; 5(24): 12342-9, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24162555

RESUMEN

CoOx-carbon nanofiber networks were prepared from cobalt(ii) acetate and polyacrylonitrile by an electrospinning method followed by thermal treatment. The XPS results demonstrated that the cobalt compound in CoOx-carbon obtained at 650 °C was CoO rather than Co or Co3O4. The CoO nanoparticles with diameters of about 8 nm were homogeneously distributed in the matrix of the nanofibers with diameters of 200 nm. As binder-free anodes for lithium-ion batteries, the discharge capacities of such CoO-carbon (CoO-C) composite nanofiber networks increased with the pyrolysis and annealing temperature, and the highest value was 633 mA h g(-1) after 52 cycles at a current density of 0.1 A g(-1) when the CoO-C was obtained at 650 °C. In addition, the rate capacities of the CoO-C obtained at 650 °C were found to be higher than that of the sample annealed at a lower temperature and pure carbon nanofiber networks annealed at 650 °C. The improved properties of CoO-C nanofiber networks were ascribed to nanofibers as the framework to keep the structural stability, and favorable mass and charge transport. The present study may provide a new strategy for the synthesis of binder-free anodes for lithium-ion batteries with excellent properties.

10.
Adv Mater ; 24(48): 6502-6, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23038151

RESUMEN

Self-supported Li(4) Ti(5) O(12) nanowire arrays with high conductivity architectures are designed and fabricated for application in a Li-ion battery. The Li(4) Ti(5) O(12) nanowire arrays grow directly on Ti foil by a facile solution-based method, further enhancing Li-ion storage properties by creating Ti(3+) sites through hydrogenation. This configuration ensures that every Li(4) Ti(5) O(12) nanowire participates in the fast electrochemical reaction, enabling remarkable rate performance and a long cycle life.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Nanocables/química , Oxígeno/química , Titanio/química , Hidrogenación , Iones/química
11.
ACS Appl Mater Interfaces ; 4(6): 2985-92, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22630038

RESUMEN

Mesoporous, micro/nanosized TiO2/C composites with uniformly dispersed TiO2 nanoparticles embedded in a carbon matrix have been rationally designed and synthesized. In brief, TiO2 precursor was infiltrated into the channels of surface-oxidized mesoporous carbon (CMK-3) by means of electrostatic interaction, followed by in situ hydrolysis and growth of TiO2 nanocrystallites, resulting in ultrafine TiO2 nanoparticle confined inside the channels of mesopores carbon. After chemical lithiation and post-annealing, TiO2 nanoparticles were transformed in situ into Li4Ti5O12 to form highly conductivity mesoporous Li4Ti5O12/C composite, as confirmed by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and nitrogen sorption isotherms. By combining high electronic conductivity, open mesoporosity, and nanosized active material, coherent mesoporous TiO2/C and Li4Ti5O12/C nanocomposites demonstrated high rate capability and good cycling properties.


Asunto(s)
Carbono/química , Suministros de Energía Eléctrica , Litio/química , Nanocompuestos/química , Titanio/química , Técnicas Electroquímicas , Iones/química , Porosidad , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA