Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Histochem Cell Biol ; 162(1-2): 41-52, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762823

RESUMEN

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.


Asunto(s)
Técnicas de Sustitución del Gen , Histonas , Proteínas Luminiscentes , Animales , Ratones , Histonas/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Anticuerpos/metabolismo , Proteína Fluorescente Roja , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Mov Disord ; 38(6): 1056-1067, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066491

RESUMEN

BACKGROUND: The intercellular transmission of pathogenic proteins plays a crucial role in the progression of neurodegenerative diseases. Previous research has shown that the neuronal uptake of such proteins is activity-dependent; however, the detailed mechanisms underlying activity-dependent α-synuclein transmission in Parkinson's disease remain unclear. OBJECTIVE: To examine whether α-synuclein transmission is affected by Ca2+ -calmodulin-calcineurin signaling in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were used to examine the effects of the modulation of Ca2+ -calmodulin-calcineurin signaling on the neuronal uptake of α-synuclein preformed fibrils. The effects of modulating Ca2+ -calmodulin-calcineurin signaling on the development of α-synuclein pathology were examined using a mouse model injected with α-synuclein preformed fibrils. RESULTS: Modulation of Ca2+ -calmodulin-calcineurin signaling by inhibiting voltage-gated Ca2+ channels, calmodulin, and calcineurin blocked the neuronal uptake of α-synuclein preformed fibrils via macropinocytosis. Different subtypes of voltage-gated Ca2+ channel differentially contributed to the neuronal uptake of α-synuclein preformed fibrils. In wild-type mice inoculated with α-synuclein preformed fibrils, we found that inhibiting calcineurin ameliorated the development of α-synuclein pathology. CONCLUSION: Our data suggest that Ca2+ -calmodulin-calcineurin signaling modulates α-synuclein transmission and has potential as a therapeutic target for Parkinson's disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , Animales , Ratones , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Calmodulina/metabolismo , Calcineurina/metabolismo , Neuronas/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902207

RESUMEN

The advancement in epigenetics research over the past several decades has led to the potential application of epigenome-editing technologies for the treatment of various diseases. In particular, epigenome editing is potentially useful in the treatment of genetic and other related diseases, including rare imprinted diseases, as it can regulate the expression of the epigenome of the target region, and thereby the causative gene, with minimal or no modification of the genomic DNA. Various efforts are underway to successfully apply epigenome editing in vivo, such as improving target specificity, enzymatic activity, and drug delivery for the development of reliable therapeutics. In this review, we introduce the latest findings, summarize the current limitations and future challenges in the practical application of epigenome editing for disease therapy, and introduce important factors to consider, such as chromatin plasticity, for a more effective epigenome editing-based therapy.


Asunto(s)
Epigenoma , Edición Génica , Epigénesis Genética , Metilación de ADN , Cromatina , Sistemas CRISPR-Cas
4.
Zygote ; 30(1): 9-16, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33988119

RESUMEN

Intracytoplasmic sperm injection (ICSI) is an important technique in male infertility treatment. Currently, sperm selection for ICSI in human assisted reproductive technology (ART) is subjective, based on a visual assessment by the operator. Therefore, it is desirable to develop methods that can objectively provide an accurate assessment of the shape and size of sperm heads that use low-magnification microscopy available in most standard fertility clinics. Recent studies have shown a correlation between sperm head size and shape and chromosomal abnormalities, and fertilization rate, and various attempts have been made to establish automated computer-based measurement of the sperm head itself. For example, a dictionary-learning technique and a deep-learning-based method have both been developed. Recently, an automatic algorithm was reported that detects sperm head malformations in real time for selection of the best sperm for ICSI. These data suggest that a real-time sperm selection system for use in ICSI is necessary. Moreover, these systems should incorporate inverted microscopes (×400-600 magnification) but not the fluorescence microscopy techniques often used for a dictionary-learning technique and a deep-learning-based method. These advances are expected to improve future success rates of ARTs. In this review, we summarize recent reports on the assessment of sperm head shape, size, and acrosome status in relation to fertility, and propose further improvements that can be made to the ARTs used in infertility treatments.


Asunto(s)
Infertilidad Masculina , Inyecciones de Esperma Intracitoplasmáticas , Acrosoma , Humanos , Masculino , Cabeza del Espermatozoide , Espermatozoides
5.
Cancer Immunol Immunother ; 70(8): 2301-2312, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33507344

RESUMEN

Stimulator of interferon genes (STING) contributes to anti-tumor immunity by activating antigen-presenting cells and inducing mobilization of tumor-specific T cells. A role for tumor-migrating neutrophils in the anti-tumor effect of STING-activating therapy has not been defined. We used mouse tumor transplantation models for assessing neutrophil migration into the tumor triggered by intratumoral treatment with STING agonist, 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). Intratumoral STING activation with cGAMP enhanced neutrophil migration into the tumor in an NF-κB/CXCL1/2-dependent manner. Blocking the neutrophil migration by anti-CXCR2 monoclonal antibody impaired T cell activation in tumor-draining lymph nodes (dLNs) and efficacy of intratumoral cGAMP treatment. Moreover, the intratumoral cGAMP treatment did not show any anti-tumor effect in type I interferon (IFN) signal-impaired mice in spite of enhanced neutrophil accumulation in the tumor. These results suggest that both neutrophil migration and type I interferon (IFN) induction by intratumoral cGAMP treatment were critical for T-cell activation of dLNs and the anti-tumor effect. In addition, we also performed in vitro analysis showing enhanced cytotoxicity of neutrophils by IFN-ß1. Extrinsic STING activation triggers anti-tumor immune responses by recruiting and activating neutrophils in the tumor via two signaling pathways, CXCL1/2 and type I IFNs.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neutrófilos/efectos de los fármacos , Nucleótidos Cíclicos/farmacología , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inmunidad/efectos de los fármacos , Interferón Tipo I/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
6.
Mov Disord ; 36(7): 1554-1564, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33813737

RESUMEN

BACKGROUND: The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. OBJECTIVE: The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α-synuclein transmission in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were transduced with α-synuclein preformed fibrils to examine the effect of perampanel on the development of α-synuclein pathology and its mechanisms of action. An α-synuclein preformed fibril-injected mouse model was used to validate the effect of oral administration of perampanel on the α-synuclein pathology in vivo. RESULTS: Perampanel inhibited the development of α-synuclein pathology in mouse hippocampal neurons transduced with α-synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α-synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α-synuclein pathology in wild-type mice inoculated with α-synuclein preformed fibrils. CONCLUSION: Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease-modifying drug for Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratones , Nitrilos , Enfermedad de Parkinson/tratamiento farmacológico , Piridonas/farmacología , alfa-Sinucleína/genética
7.
Mov Disord ; 36(9): 2036-2047, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547846

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) show motor symptoms as well as various non-motor symptoms. Postmortem studies of PD have suggested that initial alpha-synuclein (α-Syn) pathology develops independently in the olfactory bulb and lower brainstem, spreading from there stereotypically. However, it remains unclear how these two pathological pathways contribute to the clinicopathological progression of PD. OBJECTIVE: The objective of this study was to examine the clinicopathological contribution of α-Syn spread from the olfactory bulb. METHODS: We conducted pathological and behavioral analyses of human α-Syn bacterial artificial chromosome transgenic mice injected with α-Syn preformed fibrils into the bilateral olfactory bulb up to 10 months postinjection. RESULTS: α-Syn preformed fibril injections induced more widespread α-Syn pathology in the transgenic mice than that in wild-type mice. Severe α-Syn pathology in the transgenic mice injected with α-Syn preformed fibrils was initially observed along the olfactory pathway and later in the brain regions that are included in the limbic system and have connections with it. The α-Syn pathology was accompanied by regional atrophy, neuron loss, reactive astrogliosis, and microglial activation, which were remarkable in the hippocampus. Behavioral analyses revealed hyposmia, followed by anxiety-like behavior and memory impairment, but not motor dysfunction, depression-like behavior, or circadian rhythm disturbance. CONCLUSION: Our data suggest that α-Syn spread from the olfactory bulb mainly affects the olfactory pathway and limbic system as well as its related regions, leading to the development of hyposmia, anxiety, and memory loss in PD. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Bulbo Olfatorio , alfa-Sinucleína , Animales , Anosmia , Ansiedad/etiología , Modelos Animales de Enfermedad , Humanos , Trastornos de la Memoria/etiología , Ratones , Ratones Transgénicos , Bulbo Olfatorio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Brain ; 143(1): 249-265, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816026

RESUMEN

Parkinson's disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson's disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson's disease and a genome-wide association study in Parkinson's disease has identified SNCA as a risk gene for Parkinson's disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson's disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson's disease and a Rep1 polymorphism, all of which are causal of familial Parkinson's disease or increase the risk of sporadic Parkinson's disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson's disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson's disease that showed RBD-like behaviour and hyposmia without motor symptoms.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Trastornos del Olfato/genética , Enfermedad de Parkinson/genética , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/genética , alfa-Sinucleína/genética , Animales , Recuento de Células , Cromosomas Artificiales Bacterianos , Electroencefalografía , Electromiografía , Endopeptidasa K/metabolismo , Ratones Transgénicos , Trastornos del Olfato/fisiopatología , Enfermedad de Parkinson/fisiopatología , Polimorfismo de Nucleótido Simple , Trastorno de la Conducta del Sueño REM/fisiopatología , Sueño , alfa-Sinucleína/metabolismo
9.
Genes Dev ; 27(12): 1378-90, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23788624

RESUMEN

Although it is known that OCT4-NANOG are required for maintenance of pluripotent cells in vitro, the upstream signals that regulate this circuit during early development in vivo have not been identified. Here we demonstrate, for the first time, signal transducers and activators of transcription 3 (STAT3)-dependent regulation of the OCT4-NANOG circuitry necessary to maintain the pluripotent inner cell mass (ICM), the source of in vitro-derived embryonic stem cells (ESCs). We show that STAT3 is highly expressed in mouse oocytes and becomes phosphorylated and translocates to the nucleus in the four-cell and later stage embryos. Using leukemia inhibitory factor (Lif)-null embryos, we found that STAT3 phosphorylation is dependent on LIF in four-cell stage embryos. In blastocysts, interleukin 6 (IL-6) acts in an autocrine fashion to ensure STAT3 phosphorylation, mediated by janus kinase 1 (JAK1), a LIF- and IL-6-dependent kinase. Using genetically engineered mouse strains to eliminate Stat3 in oocytes and embryos, we firmly establish that STAT3 is essential for maintenance of ICM lineages but not for ICM and trophectoderm formation. Indeed, STAT3 directly binds to the Oct4 and Nanog distal enhancers, modulating their expression to maintain pluripotency of mouse embryonic and induced pluripotent stem cells. These results provide a novel genetic model of cell fate determination operating through STAT3 in the preimplantation embryo and pluripotent stem cells in vivo.


Asunto(s)
Masa Celular Interna del Blastocisto , Linaje de la Célula , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factor 3 de Transcripción de Unión a Octámeros , Factor de Transcripción STAT3 , Animales , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación , Células Madre Pluripotentes/fisiología , Unión Proteica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
10.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525404

RESUMEN

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that accelerates p16-dependent cellular senescence in vitro. We recently reported the ability of CREG1 to stimulate brown adipogenesis using adipocyte P2-CREG1-transgenic (Tg) mice; however, little is known about the effect of CREG1 on aging-associated phenotypes. In this study, we investigated the effects of CREG1 on age-related obesity and renal dysfunction in Tg mice. Increased brown fat formation was detected in aged Tg mice, in which age-associated metabolic phenotypes such as body weight gain and increases in blood glucose were improved compared with those in wild-type (WT) mice. Blood CREG1 levels increased significantly in WT mice with age, whereas the age-related increase was suppressed, and its levels were reduced, in the livers and kidneys of Tg mice relative to those in WT mice at 25 months. Intriguingly, the mRNA levels of Ink4a, Arf, and senescence-associated secretory phenotype (SASP)-related genes and p38MAPK activity were significantly lowered in the aged kidneys of Tg mice, in which the morphological abnormalities of glomeruli as well as filtering function seen in WT kidneys were alleviated. These results suggest the involvement of CREG1 in kidney aging and its potential as a target for improving age-related renal dysfunction.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Envejecimiento/genética , Riñón/metabolismo , Obesidad/genética , Proteínas Represoras/genética , Adipocitos Marrones/metabolismo , Adipocitos Marrones/patología , Adipogénesis/genética , Tejido Adiposo Pardo/patología , Envejecimiento/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Riñón/patología , Pruebas de Función Renal , Masculino , Ratones , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/patología , Fenotipo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Gastroenterology ; 156(3): 647-661.e2, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30342036

RESUMEN

BACKGROUND & AIMS: Intraductal papillary mucinous neoplasms (IPMNs) are regarded as precursors of pancreatic ductal adenocarcinomas (PDAs), but little is known about the mechanism of progression. This makes it challenging to assess cancer risk in patients with IPMNs. We investigated associations of IPMNs with concurrent PDAs by genetic and histologic analyses. METHODS: We obtained 30 pancreatic tissues with concurrent PDAs and IPMNs, and 168 lesions, including incipient foci, were mapped, microdissected, and analyzed for mutations in 18 pancreatic cancer-associated genes and expression of tumor suppressors. RESULTS: We determined the clonal relatedness of lesions, based on driver mutations shared by PDAs and concurrent IPMNs, and classified the lesions into 3 subtypes. Twelve PDAs contained driver mutations shared by all concurrent IPMNs, which we called the sequential subtype. This subset was characterized by less diversity in incipient foci with frequent GNAS mutations. Eleven PDAs contained some driver mutations that were shared with concurrent IPMNs, which we called the branch-off subtype. In this subtype, PDAs and IPMNs had identical KRAS mutations but different GNAS mutations, although the lesions were adjacent. Whole-exome sequencing and methylation analysis of these lesions indicated clonal origin with later divergence. Ten PDAs had driver mutations not found in concurrent IPMNs, called the de novo subtype. Expression profiles of TP53 and SMAD4 increased our ability to differentiate these subtypes compared with sequencing data alone. The branch-off and de novo subtypes had substantial heterogeneity among early clones, such as differences in KRAS mutations. Patients with PDAs of the branch-off subtype had a longer times of disease-free survival than patients with PDAs of the de novo or the sequential subtypes. CONCLUSIONS: Detailed histologic and genetic analysis of PDAs and concurrent IPMNs identified 3 different pathways by which IPMNs progress to PDAs-we call these the sequential, branch-off, and de novo subtypes. Subtypes might be associated with clinical and pathologic features and be used to select surveillance programs for patients with IPMNs.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Papilar/genética , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Adenocarcinoma Mucinoso/patología , Anciano , Carcinoma Ductal Pancreático/patología , Carcinoma Papilar/patología , Estudios de Cohortes , Vías Clínicas , Análisis Mutacional de ADN , Bases de Datos Factuales , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Hospitales Universitarios , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Estadificación de Neoplasias , Neoplasias Pancreáticas/patología , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia
12.
J Org Chem ; 85(16): 10934-10950, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32692554

RESUMEN

An asymmetric dearomatization of indoles bearing α-diazoacetamide functionalities was developed for synthesizing high-value spiro scaffolds. A silver phosphate chemoselectively catalyzed the sterically challenging dearomatization, whereas more typically used metal catalysts for carbene transfer reactions, such as a rhodium complex, were not effective and instead resulted in a Büchner ring expansion or cyclopropanation. Mechanistic studies indicated that the spirocyclization occurred through a silver-assisted asynchronous concerted process and not via a silver-carbene intermediate. Analyses based on natural bond orbital population and a distortion/interaction model indicated that the degree of C-Ag mutual interaction is crucial for achieving a high level of enantiocontrol. In addition, an oxidative disconnection of a C(sp3)-C(sp2) bond in the product provided unconventional access to the corresponding chiral spirooxindole.

13.
J Org Chem ; 85(10): 6420-6428, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32315174

RESUMEN

The treatment of easily accessible o-(1-hydroxy-2-alkynyl)-N-tosylanilides 1 with excess manganese(IV) oxide in the presence of substoichiometric tetrabutylammonium iodide (TBAI) in chloroform (or in the absence of TBAI in dimethylformamide, DMF) promoted a sequential oxidation/intramolecular hydroamination to give 4-quinolones 3 and/or (Z)-2-alkylidene-3-oxindoles (Z)-4 in good yields. Possibly, MnO2 played dual roles as an oxidant and as a Lewis acidic activator of intermediary ynones 2. The product distributions between 3 and (Z)-4 could be controlled by the choice of solvents.

14.
Bioorg Med Chem Lett ; 30(16): 127352, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631550

RESUMEN

Human pancreatic cancer is resistant to almost all conventional chemotherapeutic agents. It is known to proliferate aggressively within hypovascular tumor microenvironment by exhibiting remarkable tolerance to nutrition starvation,  a phenomenon termed as "austerity". Search for the new agents that eliminate the tolerance of cancer cells to nutrition starvation is a promising strategy in anticancer drug discovery. In this study, two new meroterpenoids named callistrilones O and P (1 and 2) together with eight known triterpenes (3-10) were isolated from the active dichloromethane extract of Callistemon citrinus leaves. The structure elucidation of the new compounds was achieved by HRFABMS, 1D, 2D NMR, and ECD quantum calculations. All isolated compounds were tested for their preferential cytotoxicity against PANC-1 human pancreatic cancer cells. Among these, callistrilone O (1) exhibited the most potent preferential cytotoxicity with a PC50 value of 0.3 nM, the strongest activity with over 2000 times potent than the positive control arctigenin. Callistrilone O (1) induced dramatic alterations in PANC-1 cell morphology leading to cell death under nutrient-deprived conditions. Compound 1 also inhibited PANC-1 cell migration and -PANC-1 colony formation under the nutrient-rich condition.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Myrtaceae/química , Neoplasias Pancreáticas/tratamiento farmacológico , Terpenos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Egipto , Humanos , Estructura Molecular , Neoplasias Pancreáticas/patología , Relación Estructura-Actividad , Terpenos/química , Terpenos/aislamiento & purificación , Microambiente Tumoral/efectos de los fármacos , Neoplasias Pancreáticas
15.
Exp Brain Res ; 238(1): 63-72, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31781822

RESUMEN

Voluntary contraction of skeletal muscles involves common in-phase neural oscillations in low frequencies (around 1-2 Hz) across muscles. The purpose of this study was to determine if anti-phase antagonistic cocontraction practice can attenuate the occurrence of in-phase low-frequency oscillations in antagonistic muscle activity. For this purpose, we determined the probability density function of phase coherence in surface electromyogram (EMG) between antagonistic muscles. Healthy young adults were assigned to one of three intervention groups. They performed an isometric transient and steady cocontraction test with elbow flexors and extensors before and after a session of distinct intervention. In the Cocontraction group, subjects practiced alternating anti-phase isometric cocontraction with the flexors and extensors concurrently. In the Contraction group, subjects practiced alternating isometric contraction levels with flexors or extensors independently. Subjects in the Control group did not perform motor practice. The occurrence of in-phase coherence < 3 Hz during the cocontraction test (including transient and steady portions) was determined from the probability density function of phase coherence in rectified EMG between pairs of elbow flexor and extensor muscles. The change in the probability of in-phase coherence after the intervention period was greatest in the Cocontraction group, followed by Contraction group, and then Control group, on average. The Cocontraction group showed significantly greater reductions than the Control group across the cocontraction test portions. The results suggest that a session of anti-phase cocontraction practice can consistently attenuate the occurrence of in-phase low-frequency oscillations between cocontracting antagonistic muscles across steady and non-steady cocontractions in healthy young adults.


Asunto(s)
Brazo/fisiología , Electromiografía , Contracción Isométrica/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
16.
J Nat Prod ; 83(7): 2221-2232, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32573227

RESUMEN

Human pancreatic cancer cells display remarkable tolerance to nutrition starvation that help them to survive in a hypovascular tumor microenvironment, a phenomenon known as "austerity". The elucidation of agents countering this tolerance is an established antiausterity strategy in anticancer drug discovery. In this study, a Callistemon citrinus leaf extract inhibited the viability of PANC-1 human pancreatic cancer cells preferentially under nutrient-deprived medium (NDM) with a PC50 value of 7.4 µg/mL. Workup of this extract resulted in the isolation of three new meroterpenoids, callistrilones L-N (1-3), together with 14 known compounds (4-17). The structure elucidation of the new compounds was achieved by HRFABMS and by NMR and ECD spectroscopic analysis. The new compounds showed highly potent preferential cytotoxicity against PANC-1 cells with PC50 values ranging from 10 to 65 nM in NDM. Of these, callistrilone L (1) inhibited PANC-1 cell migration and colony formation in a normal nutrient-rich condition. Callistrilone L (1) also strongly suppressed the migration of PANC-1 cells in real time. Mechanistically, 1 was found to inhibit the Akt/mTOR and autophagy activation pathway. Callistrilone L (1) and related meroterpenoids are promising leads for anticancer drug development based on the antiausterity strategy used in this work.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Myrtaceae/química , Neoplasias Pancreáticas/patología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Análisis Espectral/métodos
17.
Cell Mol Biol Lett ; 25: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32855642

RESUMEN

BACKGROUND: Animal model studies show that reductive stress is involved in cardiomyopathy and myopathy, but the exact physiological relevance remains unknown. In addition, the microRNAs miR-143 and miR-145 have been shown to be upregulated in cardiac diseases, but the underlying mechanisms associated with these regulators have yet to be explored. METHODS: We developed transgenic mouse lines expressing exogenous miR-143 and miR-145 under the control of the alpha-myosin heavy chain (αMHC) promoter/enhancer. RESULTS: The two transgenic lines showed dilated cardiomyopathy-like characteristics and early lethality with markedly increased expression of miR-143. The expression of hexokinase 2 (HK2), a cardioprotective gene that is a target of miR-143, was strongly suppressed in the transgenic hearts, but the in vitro HK activity and adenosine triphosphate (ATP) content were comparable to those observed in wild-type mice. In addition, transgenic complementation of HK2 expression did not reduce mortality rates. Although HK2 is crucial for the pentose phosphate pathway (PPP) and glycolysis, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unexpectedly higher in the hearts of transgenic mice. The expression of gamma-glutamylcysteine synthetase heavy subunit (γ-GCSc) and the in vitro activity of glutathione reductase (GR) were also higher, suggesting that the recycling of GSH and its de novo biosynthesis were augmented in transgenic hearts. Furthermore, the expression levels of glucose-6-phosphate dehydrogenase (G6PD, a rate-limiting enzyme for the PPP) and p62/SQSTM1 (a potent inducer of glycolysis and glutathione production) were elevated, while p62/SQSTM1 was upregulated at the mRNA level rather than as a result of autophagy inhibition. Consistent with this observation, nuclear factor erythroid-2 related factor 2 (Nrf2), Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) were activated, all of which are known to induce p62/SQSTM1 expression. CONCLUSIONS: Overexpression of miR-143 and miR-145 leads to a unique dilated cardiomyopathy phenotype with a reductive redox shift despite marked downregulation of HK2 expression. Reductive stress may be involved in a wider range of cardiomyopathies than previously thought.


Asunto(s)
Cardiomiopatías/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Glucólisis/fisiología , Hexoquinasa/metabolismo , Ratones , Ratones Transgénicos , Cadenas Pesadas de Miosina/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , ARN Mensajero/metabolismo , Regulación hacia Arriba/fisiología
18.
Nucleic Acids Res ; 45(15): 8758-8772, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28549158

RESUMEN

Chromatin reorganization is necessary for pluripotent stem cells, including embryonic stem cells (ESCs), to acquire lineage potential. However, it remains unclear how ESCs maintain their characteristic chromatin state for appropriate gene expression upon differentiation. Here, we demonstrate that chromodomain helicase DNA-binding domain 2 (Chd2) is required to maintain the differentiation potential of mouse ESCs. Chd2-depleted ESCs showed suppressed expression of developmentally regulated genes upon differentiation and subsequent differentiation defects without affecting gene expression in the undifferentiated state. Furthermore, chromatin immunoprecipitation followed by sequencing revealed alterations in the nucleosome occupancy of the histone variant H3.3 for developmentally regulated genes in Chd2-depleted ESCs, which in turn led to elevated trimethylation of the histone H3 lysine 27. These results suggest that Chd2 is essential in preventing suppressive chromatin formation for developmentally regulated genes and determines subsequent effects on developmental processes in the undifferentiated state.


Asunto(s)
Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias de Ratones/fisiología , Animales , Proliferación Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos NOD , Ratones SCID
19.
Org Biomol Chem ; 16(25): 4675-4682, 2018 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-29888358

RESUMEN

A simple protocol to directly access γ-amino acid derivatives by intermolecular regioselective hydroamination of trichloroethyl alkenyldiazoacetates with carbamate using a silver tetrafluoroborate catalyst is described. Density functional theory (DFT) calculations to analyze the reaction mechanism revealed that multiple attractive interactions occur in a transition state to promote the vinylogous addition of nitrogen nucleophiles.

20.
J Assist Reprod Genet ; 35(2): 251-256, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29063501

RESUMEN

PURPOSE: The purpose of this report is to analyze the chromosome status and fertilization capability of sperm obtained from an infertile male patient with ring chromosome 15. METHODS: This was a case report at a private in vitro fertilization clinic. A man diagnosed with severe oligozoospermia carrying ring chromosome 15. To evaluate the chromosome status and fertilization capability, sperm from a patient carrying ring chromosome 15 were injected into enucleated mouse oocytes. RESULTS: The karyotypes of motile sperm from a patient carrying ring chromosome 15 were normal, and ring chromosome 15 was not observed in the chromosome spread samples of 1PN. In addition, these motile sperm retained the fertilization capability. However, the fertilization rates decreased (85.2, 76.2, and 64.3%, respectively) along with the decline of the aspect ratio of the sperm head (≥ 1.50, 1.30-1.49, and < 1.30, respectively). CONCLUSIONS: The karyotypes were normal without ring chromosome 15, and motile sperm with a high aspect ratio showed adequate potential for fertilization.


Asunto(s)
Infertilidad Masculina/genética , Cromosomas en Anillo , Espermatozoides/fisiología , Animales , Cromosomas Humanos Par 15 , Femenino , Fertilización In Vitro , Humanos , Cariotipificación , Masculino , Ratones Endogámicos , Mosaicismo , Inyecciones de Esperma Intracitoplasmáticas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA