Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Lett ; 17(7): 20210194, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314641

RESUMEN

Intrapopulation variation in behaviour, including activity, boldness and aggressiveness, is becoming more widely recognized and is hypothesized to substantially affect ecological and evolutionary dynamics. Although previous studies used candidate-gene approaches and genome-wide association analyses to identify genes correlated with variations in activity and aggressiveness, behavioural variation may not be fully captured in the nuclear genome, as it does not account for mitochondrial genomes. Mitochondrial genes encode products that are key regulators of the cellular energy-producing pathways in metabolic processes and are thought to play a significant role in life-history and reproductive traits. In this study, we considered many isofemale lines of Drosophila immigrans established from two wild populations to investigate whether intrapopulation variation in the mitochondrial genome affected activity level within this species. We identified two major haplogroups in these populations, and activity levels in both larvae and adults differed significantly between the two haplogroups. This result indicated that intrapopulation variation in activity level may be partially controlled by mitochondrial genes, along with the interaction between nuclear and mitochondrial genes and the age of individual organisms.


Asunto(s)
Drosophila , Genoma Mitocondrial , Animales , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Drosophila/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Mitocondrias/genética
2.
Microorganisms ; 12(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399822

RESUMEN

The inactivation of airborne pathogenic microorganisms is crucial to attenuate the dissemination of infectious diseases induced by airborne pathogens. Conventional air disinfection methodologies, such as ultraviolet (UV) irradiation and ozone treatment, have demonstrated limited efficacy. Consequently, we investigated the potential of employing pulsed voltages to effectively eradicate bacteria within aerosols. Our inquiry revealed that the bacterial disinfection rate increased proportionally with elevated applied voltage and frequency. For instance, when a pulsed voltage of 20 kV and a frequency of 500 Hz were applied, a substantial disinfection rate exceeding 6.0 logarithmic units was attained. Furthermore, with the utilization of the stranded wire anodes, the disinfection intensity could be augmented by up to 2.0 logarithmic units compared with the solid wire configuration. Through the utilization of a stranded wire electrode model, we scrutinized the electric field encompassing the electrode, revealing a non-uniform electric field with the stranded wire electrode. This observation indicated an amplified bacterial disinfection effect, aligning with our experimental outcomes. These findings significantly enhance our comprehension of efficacious approaches to electrically disinfecting airborne bacteria.

3.
Microorganisms ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838482

RESUMEN

Owing to the increased use of antibiotics, drug-resistant strains, including those that are resistant to the antibiotic vancomycin, have emerged, which has become a major problem. In Japan, sewage treatments consist of sterilization with chlorine; however, this may not be sufficient to inactivate these bacteria. In this study, impulse voltage was employed instead of chlorine to inactivate drug-resistant bacteria. The results showed that sterilization above 105 CFU/mL is possible with longer application times of applied voltages above 4.5 kV. The effectiveness of impulse-voltage-mediated sterilization increased as the temperature of the bacterial suspension increased. The number of bacteria sterilized via impulse voltage was correlated with conductivity when the number of bacteria sterilized by impulse voltage exceeded 105 CFU/mL. The sterilization rate achieved by the use of impulse voltage could be estimated immediately by measuring the electrical conductivity and without the need for using the culture method.

4.
Sci Rep ; 13(1): 21940, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114661

RESUMEN

Seasonal environmental change is one of the most rapid and striking environmental variables. Although relatively rapid adaptation to environmental changes over several years or several decades has been described in many taxa, rapid responses to seasonal environments are delicate, and therefore, the detection of the evolutionary responses requires sensitive methods. In this study, we examined seasonal changes in phenotypes related to thermal tolerance and morphological traits of Drosophila lutescens collected at the spring and autumn periods from a single location. We first demonstrated that flies in the two seasonal periods were almost genetically identical using double-digest restriction site-associated DNA sequencing and analysis. Using an experimental design to eliminate the effect of possible confounding factors that influence phenotypes (i.e., maternal effects and the environmental conditions in which each phenotype was analyzed), we showed that the heat tolerance of D. lutescens was significantly higher in the autumn population than in the spring population. Furthermore, cold tolerance was slightly higher in the spring population than in the autumn one. Although wing length and thorax length did not change significantly between seasons, the ratio of wing length to thorax length changed significantly between them. These results suggest that seasonal environmental heterogeneity induces rapid phenotypic changes within a year. Finally, we discuss the possibility of rapid evolutionary responses to seasonal changes.


Asunto(s)
Drosophila , Animales , Drosophila/genética , Estaciones del Año , Fenotipo
5.
J Hazard Mater ; 424(Pt A): 127382, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879573

RESUMEN

We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 105 copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Aguas del Alcantarillado , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/genética , Genes Bacterianos , Aguas Residuales
6.
Ecol Evol ; 10(24): 14388-14393, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391722

RESUMEN

Genetic diversity within a population, such as polymorphisms and personality, is considered to improve population performance because such intraspecific variations have the potential to alleviate the competition for a limited resource or the risk of predation and sexual harassment at a population level. Variation in the level and rhythm of daily activity in a population could also affect population performance by directly altering ecological, social, and sexual interactions among individuals. However, it remains to be elucidated whether such intra-population variation in the level and rhythms of daily activity exists in a natural population. Here, we investigated the genetic variation in daily activity within a single natural population of Drosophila immigrans. We established 21 isofemale lines from a single natural population and measured larval activity level and the level and daily pattern of adult activity over a 24 hr period. Larval activity level significantly varied among isofemale lines. Likewise, the activity level in the adult stage significantly varied among lines. The significant variation was also found in the daily pattern of adult activity; some lines showed greater activity level in the daytime, and others showed greater activity level in the night. Our results consistently suggest that there is a genetic variation in behavioral activity in a natural population, probably contributing to shaping the population performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA