Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821359

RESUMEN

Macroautophagy, the degradation and recycling of cytosolic components in the lysosome, is an important cellular mechanism. It is a membrane-mediated process that is linked to vesicular trafficking events. The sorting nexin (SNX) protein family controls the sorting of a large array of cargoes, and various SNXs impact autophagy. To improve our understanding of their functions in vivo, we screened all Drosophila SNXs using inducible RNA interference in the fat body. Significantly, depletion of Snazarus (Snz) led to decreased autophagic flux. Interestingly, we observed altered distribution of Vamp7-positive vesicles with Snz depletion, and the roles of Snz were conserved in human cells. SNX25, the closest human ortholog to Snz, regulates both VAMP8 endocytosis and lipid metabolism. Through knockout-rescue experiments, we demonstrate that these activities are dependent on specific SNX25 domains and that the autophagic defects seen upon SNX25 loss can be rescued by ethanolamine addition. We also demonstrate the presence of differentially spliced forms of SNX14 and SNX25 in cancer cells. This work identifies a conserved role for Snz/SNX25 as a regulator of autophagic flux and reveals differential isoform expression between paralogs.


Asunto(s)
Proteínas de Drosophila , Nexinas de Clasificación , Animales , Autofagia/genética , Drosophila/metabolismo , Endocitosis , Humanos , Transporte de Proteínas , Proteínas R-SNARE , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(52): 33282-33294, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33310904

RESUMEN

Fatty acids (FAs) are central cellular metabolites that contribute to lipid synthesis, and can be stored or harvested for metabolic energy. Dysregulation in FA processing and storage causes toxic FA accumulation or altered membrane compositions and contributes to metabolic and neurological disorders. Saturated lipids are particularly detrimental to cells, but how lipid saturation levels are maintained remains poorly understood. Here, we identify the cerebellar ataxia spinocerebellar ataxia, autosomal recessive 20 (SCAR20)-associated protein Snx14, an endoplasmic reticulum (ER)-lipid droplet (LD) tethering protein, as a factor required to maintain the lipid saturation balance of cell membranes. We show that following saturated FA (SFA) treatment, the ER integrity of SNX14KO cells is compromised, and both SNX14KO cells and SCAR20 disease patient-derived cells are hypersensitive to SFA-mediated lipotoxic cell death. Using APEX2-based proximity labeling, we reveal the protein composition of Snx14-associated ER-LD contacts and define a functional interaction between Snx14 and Δ-9 FA desaturase SCD1. Lipidomic profiling reveals that SNX14KO cells increase membrane lipid saturation following exposure to palmitate, phenocopying cells with perturbed SCD1 activity. In line with this, SNX14KO cells manifest delayed FA processing and lipotoxicity, which can be rescued by SCD1 overexpression. Altogether, these mechanistic insights reveal a role for Snx14 in FA and ER homeostasis, defects in which may underlie the neuropathology of SCAR20.

3.
EMBO Rep ; 19(1): 57-72, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146766

RESUMEN

Eukaryotic cells store lipids in cytosolic organelles known as lipid droplets (LDs). Lipid droplet bud from the endoplasmic reticulum (ER), and may be harvested by the vacuole for energy during prolonged periods of starvation. How cells spatially coordinate LD production is poorly understood. Here, we demonstrate that yeast ER-vacuole contact sites (NVJs) physically expand in response to metabolic stress, and serve as sites for LD production. NVJ tether Mdm1 demarcates sites of LD budding, and interacts with fatty acyl-CoA synthases at the NVJ periphery. Artificially expanding the NVJ through over-expressing Mdm1 is sufficient to drive NVJ-associated LD production, whereas ablating the NVJ induces defects in fatty acid-to-triglyceride production. Collectively, our data suggest a tight metabolic link between nutritional stress and LD biogenesis that is spatially coordinated at ER-vacuole contact sites.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Gotas Lipídicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Vacuolas/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Cerulenina/farmacología , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/biosíntesis , Glucosa/deficiencia , Glucosa/farmacología , Glicerol/metabolismo , Glicerol/farmacología , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/ultraestructura , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Plásmidos/química , Plásmidos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo , Transformación Genética , Triglicéridos/biosíntesis , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
4.
J Cell Sci ; 128(23): 4395-406, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26490996

RESUMEN

Lipin proteins have key functions in lipid metabolism, acting as both phosphatidate phosphatases (PAPs) and nuclear regulators of gene expression. We show that the insulin and TORC1 pathways independently control functions of Drosophila Lipin (dLipin). Reduced signaling through the insulin receptor strongly enhanced defects caused by dLipin deficiency in fat body development, whereas reduced signaling through TORC1 led to translocation of dLipin into the nucleus. Reduced expression of dLipin resulted in decreased signaling through the insulin-receptor-controlled PI3K-Akt pathway and increased hemolymph sugar levels. Consistent with this, downregulation of dLipin in fat body cell clones caused a strong growth defect. The PAP but not the nuclear activity of dLipin was required for normal insulin pathway activity. Reduction of other enzymes of the glycerol-3 phosphate pathway affected insulin pathway activity in a similar manner, suggesting an effect that is mediated by one or more metabolites associated with the pathway. Taken together, our data show that dLipin is subject to intricate control by the insulin and TORC1 pathways, and that the cellular status of dLipin impacts how fat body cells respond to signals relayed through the PI3K-Akt pathway.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Metabolismo de los Lípidos/fisiología , Complejos Multiproteicos/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética
5.
J Cell Biol ; 218(4): 1319-1334, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808705

RESUMEN

Lipid droplets (LDs) serve as cytoplasmic reservoirs for energy-rich fatty acids (FAs) stored in the form of triacylglycerides (TAGs). During nutrient stress, yeast LDs cluster adjacent to the vacuole/lysosome, but how this LD accumulation is coordinated remains poorly understood. The ER protein Mdm1 is a molecular tether that plays a role in clustering LDs during nutrient depletion, but its mechanism of function remains unknown. Here, we show that Mdm1 associates with LDs through its hydrophobic N-terminal region, which is sufficient to demarcate sites for LD budding. Mdm1 binds FAs via its Phox-associated domain and coenriches with fatty acyl-coenzyme A ligase Faa1 at LD bud sites. Consistent with this, loss of MDM1 perturbs free FA activation and Dga1-dependent synthesis of TAGs, elevating the cellular FA level, which perturbs ER morphology and sensitizes yeast to FA-induced lipotoxicity. We propose that Mdm1 coordinates FA activation adjacent to the vacuole to promote LD production in response to stress, thus maintaining ER homeostasis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicéridos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Ácidos Grasos/toxicidad , Homeostasis , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Filamentos Intermediarios/genética , Gotas Lipídicas/ultraestructura , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
6.
Dev Cell ; 50(5): 557-572.e5, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31422916

RESUMEN

Adipocytes store nutrients as lipid droplets (LDs), but how they organize their LD stores to balance lipid uptake, storage, and mobilization remains poorly understood. Here, using Drosophila fat body (FB) adipocytes, we characterize spatially distinct LD populations that are maintained by different lipid pools. We identify peripheral LDs (pLDs) that make close contact with the plasma membrane (PM) and are maintained by lipophorin-dependent lipid trafficking. pLDs are distinct from larger cytoplasmic medial LDs (mLDs), which are maintained by FASN1-dependent de novo lipogenesis. We find that sorting nexin CG1514 or Snazarus (Snz) associates with pLDs and regulates LD homeostasis at ER-PM contact sites. Loss of SNZ perturbs pLD organization, whereas Snz over-expression drives LD expansion, triacylglyceride production, starvation resistance, and lifespan extension through a DESAT1-dependent pathway. We propose that Drosophila adipocytes maintain spatially distinct LD populations and identify Snz as a regulator of LD organization and inter-organelle crosstalk.


Asunto(s)
Adipocitos/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Gotas Lipídicas/metabolismo , Nexinas de Clasificación/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Retículo Endoplásmico/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Longevidad , Unión Proteica , Nexinas de Clasificación/genética
7.
Commun Biol ; 1: 110, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271990

RESUMEN

In mammals, blood glucose levels likely play a role in appetite regulation yet the mechanisms underlying this phenomenon remain opaque. Mechanisms can often be explored from Drosophila genetic approaches. To determine if circulating sugars might be involved in Drosophila feeding behaviors, we scored hemolymph glucose and trehalose, and food ingestion in larvae subjected to various diets, genetic mutations, or RNAi. We found that larvae with glucose elevations, hyperglycemia, have an aversion to feeding; however, trehalose levels do not track with feeding behavior. We further discovered that insulins and SLC5A11 may participate in glucose-regulated feeding. To see if food aversion might be an appropriate screening method for hyperglycemia candidates, we developed a food aversion screen to score larvae with abnormal feeding for glucose. We found that many feeding defective larvae have glucose elevations. These findings highlight intriguing roles for glucose in fly biology as a potential cue and regulator of appetite.

8.
Commun Integr Biol ; 9(3): e1156278, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27489577

RESUMEN

Since their initial observation, contact sites formed between different organelles have transitioned from ignored curiosities to recognized centers for the exchange of metabolites and lipids. Contact formed between the ER and endomembrane system (eg. the plasma membrane, endosomes, and lysosomes) is of particular biomedical interest, as it governs aspects of lipid metabolism, organelle identity, and cell signaling. Here, we review the field of ER-endolysosomal communication from the perspective of three model systems: budding yeast, the fruit fly D. melanogaster, and mammals. From this broad perspective, inter-organelle communication displays a consistent role in metabolic regulation that was differentially tuned during the development of complex metazoan life. We also examine the current state of understanding of lipid exchange between organelles, and discuss molecular mechanisms by which this occurs.

9.
Nat Commun ; 6: 7102, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25994086

RESUMEN

Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D. melanogaster to uncover the 'glucome', the complete set of genes involved in glucose regulation in flies. Partial genomic screens of ∼1,000 genes yield ∼160 hyperglycaemia 'flyabetes' candidates that we classify using fat body- and muscle-specific knockdown and biochemical assays. The results highlight the minor glucose fraction as a physiological indicator of metabolism in Drosophila. The hits uncovered in our screen may have conserved functions in mammalian glucose homeostasis, as heterozygous and homozygous mutants of Ck1alpha in the murine adipose lineage, develop diabetes. Our findings demonstrate that glucose has a role in fly biology and that genetic screenings carried out in flies may increase our understanding of mammalian pathophysiology.


Asunto(s)
Tejido Adiposo/metabolismo , Quinasa de la Caseína I/metabolismo , Drosophila melanogaster/genética , Glucosa/metabolismo , Hiperglucemia/genética , Animales , Metabolismo de los Hidratos de Carbono , Quinasa de la Caseína I/genética , Cuerpo Adiposo/metabolismo , Femenino , Interacción Gen-Ambiente , Hemolinfa/metabolismo , Masculino , Metaboloma , Ratones , Músculos/enzimología , Mutación , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Trehalosa/metabolismo
10.
Mol Cell Biol ; 31(8): 1646-56, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21300783

RESUMEN

Lipins are evolutionarily conserved proteins found from yeasts to humans. Mammalian and yeast lipin proteins have been shown to control gene expression and to enzymatically convert phosphatidate to diacylglycerol, an essential precursor in triacylglcerol (TAG) and phospholipid synthesis. Loss of lipin 1 in the mouse, but not in humans, leads to lipodystrophy and fatty liver disease. Here we show that the single lipin orthologue of Drosophila melanogaster (dLipin) is essential for normal adipose tissue (fat body) development and TAG storage. dLipin mutants are characterized by reductions in larval fat body mass, whole-animal TAG content, and lipid droplet size. Individual cells of the underdeveloped fat body are characterized by increased size and ultrastructural defects affecting cell nuclei, mitochondria, and autophagosomes. Under starvation conditions, dLipin is transcriptionally upregulated and functions to promote survival. Together, these data show that dLipin is a central player in lipid and energy metabolism, and they establish Drosophila as a genetic model for further studies of conserved functions of the lipin family of metabolic regulators.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Tejido Adiposo/ultraestructura , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/metabolismo , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA