Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Xenotransplantation ; 26(1): e12468, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30375053

RESUMEN

The ultimate goal of regenerative medicine is the transplantation of a target organ generated by the patient's own cells. Recently, a method of organ generation using pluripotent stem cells (PSCs) and blastocyst complementation was reported. This approach is based on chimeric animal generation using an early embryo and PSCs, and the contribution of PSCs to the target organ is key to the method's success. However, the contribution rate of PSCs in target organs generated by different chimeric animal generation methods remains unknown. In this study, we used 8-cell embryo aggregation, 8-cell embryo injection, and blastocyst injection to generate interspecies chimeric mice using rat embryonic stem (ES) cells and then investigated the differences in the contribution rate of the rat ES cells. The rate of chimeric mouse generation was the highest using blastocyst injection, followed in order by 8-cell embryo injection and 8-cell embryo aggregation. However, the contribution rate of rat ES cells was the highest in chimeric neonates generated by 8-cell embryo injection, and the difference was statistically significant in the liver. Live functionality was confirmed by analyzing the expression of rat hepatocyte-derived drug-metabolizing enzyme. Collectively, these findings indicate that the 8-cell embryo injection method is the most suitable for generation of PSC-derived organs via chimeric animal generation, particularly for the liver.


Asunto(s)
Blastocisto/citología , Agregación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Trasplante Heterólogo , Animales , Diferenciación Celular/fisiología , Femenino , Ratones , Ratas
2.
Genes Cells ; 18(12): 1053-69, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24581426

RESUMEN

Glycogen storage disease type Ib (GSDIb) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), which leads to neutrophil dysfunction. However, the underlying causes of these dysfunctions and their relationship with glucose homeostasis are unclear. Induced pluripotent stem cells (iPSCs) hold a great promise for advances in developmental biology, cell-based therapy and modeling of human disease. Here, we examined the use of iPSCs as a model for GSDIb. In this study, one 2-year-old patient was genetically screened and diagnosed with GSDIb. We established iPSCs and differentiated these cells into hepatocytes and neutrophils, which comprise the main pathological components of GSDIb. Cells that differentiated into hepatocytes exhibited characteristic albumin secretion and indocyanine green uptake. Moreover, iPSC-derived cells generated from patients with GSDIb metabolic abnormalities recapitulated key pathological features of the diseases affecting the patients from whom they were derived, such as glycogen, lactate, pyruvate and lipid accumulation. Cells that were differentiated into neutrophils also showed the GSDIb pathology. In addition to the expression of neutrophil markers, we showed increased superoxide anion production, increased annexin V binding and activation of caspase-3 and caspase-9, consistent with the GSDIb patient's neutrophils. These results indicate valuable tools for the analysis of this pathology and the development of future treatments.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Células Madre Pluripotentes Inducidas/patología , Diferenciación Celular , Células Cultivadas , Preescolar , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA