Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nucleic Acids Res ; 42(11): 6901-20, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24782528

RESUMEN

The appropriate expression of the roughly 30,000 human genes requires multiple layers of control. The oncoprotein MYC, a transcriptional regulator, contributes to many of the identified control mechanisms, including the regulation of chromatin, RNA polymerases, and RNA processing. Moreover, MYC recruits core histone-modifying enzymes to DNA. We identified an additional transcriptional cofactor complex that interacts with MYC and that is important for gene transcription. We found that the trithorax protein ASH2L and MYC interact directly in vitro and co-localize in cells and on chromatin. ASH2L is a core subunit of KMT2 methyltransferase complexes that target histone H3 lysine 4 (H3K4), a mark associated with open chromatin. Indeed, MYC associates with H3K4 methyltransferase activity, dependent on the presence of ASH2L. MYC does not regulate this methyltransferase activity but stimulates demethylation and subsequently acetylation of H3K27. KMT2 complexes have been reported to associate with histone H3K27-specific demethylases, while CBP/p300, which interact with MYC, acetylate H3K27. Finally WDR5, another core subunit of KMT2 complexes, also binds directly to MYC and in genome-wide analyses MYC and WDR5 are associated with transcribed promoters. Thus, our findings suggest that MYC and ASH2L-KMT2 complexes cooperate in gene transcription by controlling H3K27 modifications and thereby regulate bivalent chromatin.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Línea Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Humanos , Péptidos y Proteínas de Señalización Intracelular , Metilación , Proteínas Nucleares/antagonistas & inhibidores , Regiones Promotoras Genéticas , Factores de Transcripción/antagonistas & inhibidores
2.
PLoS One ; 16(7): e0253401, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34228726

RESUMEN

The field of liquid biopsy has seen extensive growth in recent decades, making it one of the most promising areas in molecular diagnostics. Circulating cell-free DNA (ccfDNA) especially is used as an analyte in a growing number of diagnostic assays. These assays require specified preanalytical workflows delivering ccfDNA in qualities and quantities that facilitate correct and reliable results. As each step and component used in the preanalytical process has the potential to influence the assay sensitivity and other performance characteristics, it is key to find an unbiased experimental setup to test these factors in diagnostic or research laboratories. We defined one such setup by using blood from healthy subjects and commercially available products for blood collection, spike-in material, ccfDNA isolation, and qPCR assays. As the primary read-out, we calculated the probit model-based LOD95 (limit of detection of the 95th percentile) from the qPCR assay results. In a proof of principle study we tested two different but widely used blood ccfDNA profile stabilization technologies in blood collection tubes, the Cell-Free DNA BCT and the PAXgene Blood ccfDNA Tube. We tested assays for three different EGFR gene mutations and one BRAF gene mutation. The study design revealed differences in performance between the two tested technologies for all four mutations. In conclusion, we successfully established a blueprint for a test procedure capable of verifying and validating a liquid biopsy workflow from blood collection to the analytical result.


Asunto(s)
Sistema Libre de Células , ADN/metabolismo , Adolescente , Adulto , Anciano , Sistema Libre de Células/química , ADN/análisis , ADN/sangre , ADN/genética , Femenino , Genes erbB-1/genética , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
3.
Sci Rep ; 9(1): 8262, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164666

RESUMEN

Post-translational modifications of core histones participate in controlling the expression of genes. Methylation of lysine 4 of histone H3 (H3K4), together with acetylation of H3K27, is closely associated with open chromatin and gene transcription. H3K4 methylation is catalyzed by KMT2 lysine methyltransferases that include the mixed-lineage leukemia 1-4 (MLL1-4) and SET1A and B enzymes. For efficient catalysis, all six require a core complex of four proteins, WDR5, RBBP5, ASH2L, and DPY30. We report that targeted disruption of Ash2l in the murine hematopoietic system results in the death of the mice due to a rapid loss of mature hematopoietic cells. However, lin-Sca1+Kit+ (LSK) cells, which are highly enriched in hematopoietic stem and multi-potent progenitor cells, accumulated in the bone marrow. The loss of Ash2l resulted in global reduction of H3K4 methylation and deregulated gene expression, including down-regulation of many mitosis-associated genes. As a consequence, LSK cells accumulated in the G2-phase of the cell cycle and were unable to proliferate and differentiate. In conclusion, Ash2l is essential for balanced gene expression and for hematopoietic stem and multi-potent progenitor cell physiology.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular , Proliferación Celular/genética , Cromatina/genética , Regulación de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/genética , Metilación , Ratones
4.
PLoS One ; 10(4): e0123736, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25860957

RESUMEN

Inhibitor of growth (ING) proteins have multiple functions in the control of cell proliferation, mainly by regulating processes associated with chromatin regulation and gene expression. ING5 has been described to regulate aspects of gene transcription and replication. Moreover deregulation of ING5 is observed in different tumors, potentially functioning as a tumor suppressor. Gene transcription in late G1 and in S phase and replication is regulated by cyclin-dependent kinase 2 (CDK2) in complex with cyclin E or cyclin A. CDK2 complexes phosphorylate and regulate several substrate proteins relevant for overcoming the restriction point and promoting S phase. We have identified ING5 as a novel CDK2 substrate. ING5 is phosphorylated at a single site, threonine 152, by cyclin E/CDK2 and cyclin A/CDK2 in vitro. This site is also phosphorylated in cells in a cell cycle dependent manner, consistent with it being a CDK2 substrate. Furthermore overexpression of cyclin E/CDK2 stimulates while the CDK2 inhibitor p27KIP1 represses phosphorylation at threonine 152. This site is located in a bipartite nuclear localization sequence but its phosphorylation was not sufficient to deregulate the subcellular localization of ING5. Although ING5 interacts with the tumor suppressor p53, we could not establish p53-dependent regulation of cell proliferation by ING5 and by phospho-site mutants. Instead we observed that the knockdown of ING5 resulted in a strong reduction of proliferation in different tumor cell lines, irrespective of the p53 status. This inhibition of proliferation was at least in part due to the induction of apoptosis. In summary we identified a phosphorylation site at threonine 152 of ING5 that is cell cycle regulated and we observed that ING5 is necessary for tumor cell proliferation, without any apparent dependency on the tumor suppressor p53.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Línea Celular , Proliferación Celular/fisiología , Ciclina A/antagonistas & inhibidores , Ciclina A/genética , Ciclina A/metabolismo , Ciclina E/antagonistas & inhibidores , Ciclina E/genética , Ciclina E/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Treonina/química , Factores de Transcripción/química , Factores de Transcripción/genética , Transfección , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA