Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7933): 687-692, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049503

RESUMEN

The social cost of carbon dioxide (SC-CO2) measures the monetized value of the damages to society caused by an incremental metric tonne of CO2 emissions and is a key metric informing climate policy. Used by governments and other decision-makers in benefit-cost analysis for over a decade, SC-CO2 estimates draw on climate science, economics, demography and other disciplines. However, a 2017 report by the US National Academies of Sciences, Engineering, and Medicine1 (NASEM) highlighted that current SC-CO2 estimates no longer reflect the latest research. The report provided a series of recommendations for improving the scientific basis, transparency and uncertainty characterization of SC-CO2 estimates. Here we show that improved probabilistic socioeconomic projections, climate models, damage functions, and discounting methods that collectively reflect theoretically consistent valuation of risk, substantially increase estimates of the SC-CO2. Our preferred mean SC-CO2 estimate is $185 per tonne of CO2 ($44-$413 per tCO2: 5%-95% range, 2020 US dollars) at a near-term risk-free discount rate of 2%, a value 3.6 times higher than the US government's current value of $51 per tCO2. Our estimates incorporate updated scientific understanding throughout all components of SC-CO2 estimation in the new open-source Greenhouse Gas Impact Value Estimator (GIVE) model, in a manner fully responsive to the near-term NASEM recommendations. Our higher SC-CO2 values, compared with estimates currently used in policy evaluation, substantially increase the estimated benefits of greenhouse gas mitigation and thereby increase the expected net benefits of more stringent climate policies.


Asunto(s)
Dióxido de Carbono , Modelos Climáticos , Factores Socioeconómicos , Dióxido de Carbono/análisis , Dióxido de Carbono/economía , Clima , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/economía , Incertidumbre , Descuento por Demora , Riesgo , Formulación de Políticas , Política Ambiental
2.
J Virol ; : e0040924, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869284

RESUMEN

Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.

3.
J Virol ; 97(10): e0127123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819131

RESUMEN

IMPORTANCE: The respiratory tract of humans is constantly exposed to potentially harmful agents, such as small particles or pathogens, and thus requires protective measures. Respiratory mucus that lines the airway epithelia plays a major role in the prevention of viral infections by limiting the mobility of viruses, allowing subsequent mucociliary clearance. Understanding the interplay between respiratory mucus and viruses can help elucidate host and virus characteristics that enable the initiation of infection. Here, we tested a panel of primary influenza A viruses of avian or human origin for their sensitivity to mucus derived from primary human airway cultures and found that differences between virus strains can be mapped to viral neuraminidase activity. We also show that binding of influenza A viruses to decoy receptors on highly glycosylated mucus components constitutes the major inhibitory function of mucus against influenza A viruses.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Moco , Neuraminidasa , Animales , Humanos , Aves , Virus de la Influenza A/metabolismo , Moco/metabolismo , Neuraminidasa/metabolismo , Sistema Respiratorio/metabolismo
4.
Opt Express ; 31(10): 16690-16708, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157743

RESUMEN

We demonstrate a fully submerged underwater LiDAR transceiver system based on single-photon detection technologies. The LiDAR imaging system used a silicon single-photon avalanche diode (SPAD) detector array fabricated in complementary metal-oxide semiconductor (CMOS) technology to measure photon time-of-flight using picosecond resolution time-correlated single-photon counting. The SPAD detector array was directly interfaced to a Graphics Processing Unit (GPU) for real-time image reconstruction capability. Experiments were performed with the transceiver system and target objects immersed in a water tank at a depth of 1.8 meters, with the targets placed at a stand-off distance of approximately 3 meters. The transceiver used a picosecond pulsed laser source with a central wavelength of 532 nm, operating at a repetition rate of 20 MHz and average optical power of up to 52 mW, dependent on scattering conditions. Three-dimensional imaging was demonstrated by implementing a joint surface detection and distance estimation algorithm for real-time processing and visualization, which achieved images of stationary targets with up to 7.5 attenuation lengths between the transceiver and the target. The average processing time per frame was approximately 33 ms, allowing real-time three-dimensional video demonstrations of moving targets at ten frames per second at up to 5.5 attenuation lengths between transceiver and target.

5.
Ecol Appl ; 33(2): e2773, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36317855

RESUMEN

In the welcome circumstance that species believed extinct are rediscovered, it is often the case that biological knowledge acquired before the presumed extinction is limited. Efforts to address these knowledge gaps, in particular to assess the taxonomic integrity and conservation status of such species, can be hampered by a lack of genetic data and scarcity of samples in museum collections. Here, we present a proof-of-concept case study based on a multidisciplinary data evaluation approach to tackle such problems. The approach was developed after the rediscovery, 40 years after its presumed extinction, of the enigmatic Lake Constance deep-water charr Salvelinus profundus. Targeted surveys led to the capture of further species and additional sympatric normal charr, Salvelinus cf. umbla. Since the lake had been subject to massive stocking in the past, an evaluation of the genetic integrity of both extant forms was called for in order to assess possible introgression. A two-step genomic approach was developed based on restriction site associated DNA (RAD). Diagnostic population genomic (single nucleotide polymorphism [SNP]) data were harvested from contemporary samples and used for RNA bait design to perform target capture in DNA libraries of archival scale material, enabling a comparison between extant and historic samples. Furthermore, life history traits and morphological data for both extant forms were gathered and compared with historical data from the past 60-120 years. While extant deep-water charr matched historical deep-water specimens in body shape, gill raker count, and growth rates, significant differences were discovered between historical and extant normal charr. These resulted were supported by genomic analyses of contemporary samples, revealing the two extant forms to be highly divergent. The results of population assignment tests suggest that the endemic deep-water charr persisted in Lake Constance during the eutrophic phase, but not one of the historical genomic samples could be assigned to the extant normal charr taxon. Stocking with non-endemic charr seems to be the most likely reason for these changes. This proof-of-concept study presents a multidisciplinary data evaluation approach that simultaneously tests population genomic integrity and addresses some of the conservation issues arising from rediscovery of a species characterized by limited data availability.


Asunto(s)
Lagos , Trucha , Animales , Efectos Antropogénicos , Agua
6.
J Anim Ecol ; 92(7): 1404-1415, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190852

RESUMEN

Extreme climatic events may influence individual-level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade-offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane ( ρ = 1.512 ; 95% CI: 1.488, 1.538), relative to ordinary years ρ = 1.482 ; 1.475 , 1.490 . Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.


Asunto(s)
Tormentas Ciclónicas , Rasgos de la Historia de Vida , Animales , Macaca mulatta , Dinámica Poblacional , Reproducción
7.
Environ Sci Technol ; 57(1): 486-497, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537693

RESUMEN

Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles y Gotitas Respiratorias , Humanos , Concentración de Iones de Hidrógeno , SARS-CoV-2 , Inactivación de Virus , Transmisión de Enfermedad Infecciosa
8.
Nature ; 548(7669): 561-566, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28846999

RESUMEN

Magnetic skyrmions are topologically stable, vortex-like objects surrounded by chiral boundaries that separate a region of reversed magnetization from the surrounding magnetized material. They are closely related to nanoscopic chiral magnetic domain walls, which could be used as memory and logic elements for conventional and neuromorphic computing applications that go beyond Moore's law. Of particular interest is 'racetrack memory', which is composed of vertical magnetic nanowires, each accommodating of the order of 100 domain walls, and that shows promise as a solid state, non-volatile memory with exceptional capacity and performance. Its performance is derived from the very high speeds (up to one kilometre per second) at which chiral domain walls can be moved with nanosecond current pulses in synthetic antiferromagnet racetracks. Because skyrmions are essentially composed of a pair of chiral domain walls closed in on themselves, but are, in principle, more stable to perturbations than the component domain walls themselves, they are attractive for use in spintronic applications, notably racetrack memory. Stabilization of skyrmions has generally been achieved in systems with broken inversion symmetry, in which the asymmetric Dzyaloshinskii-Moriya interaction modifies the uniform magnetic state to a swirling state. Depending on the crystal symmetry, two distinct types of skyrmions have been observed experimentally, namely, Bloch and Néel skyrmions. Here we present the experimental manifestation of another type of skyrmion-the magnetic antiskyrmion-in acentric tetragonal Heusler compounds with D2d crystal symmetry. Antiskyrmions are characterized by boundary walls that have alternating Bloch and Néel type as one traces around the boundary. A spiral magnetic ground-state, which propagates in the tetragonal basal plane, is transformed into an antiskyrmion lattice state under magnetic fields applied along the tetragonal axis over a wide range of temperatures. Direct imaging by Lorentz transmission electron microscopy shows field-stabilized antiskyrmion lattices and isolated antiskyrmions from 100 kelvin to well beyond room temperature, and zero-field metastable antiskyrmions at low temperatures. These results enlarge the family of magnetic skyrmions and pave the way to the engineering of complex bespoke designed skyrmionic structures.

9.
J Chem Phys ; 158(19)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37184016

RESUMEN

An intermolecular potential is reported for molecular hydrogen that combines two-body interactions from ab initio data with three-body interactions. The accuracy of the two-body potential is validated by comparison with experimental second virial coefficient data. Experimental pressure-density-temperature data are used to validate the addition of three-body interactions, often yielding very accurate predictions. Classical Monte Carlo simulations that neglect quantum effects are reported for the vapor-liquid equilibria (VLE), critical properties, and the triple point. A comparison with experimental data indicates that the effect of quantum interactions is to narrow the VLE phase envelope and to lower the critical temperature. The three-body interactions have a considerable influence on the phase behavior, resulting in good agreement with the experimental density. The critical properties of the two-body + three-body potential for hydrogen provide an alternative set of input parameters to improve the accuracy of theoretical predictions at temperatures above 100 K. In the vicinity of the critical point, the coexistence densities do not obey the law of rectilinear diameters, which is a feature that has largely been overlooked in both experimental data and reference equations of state.

10.
J Fish Biol ; 102(1): 4-26, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36444901

RESUMEN

A new species, Parakneria alytogrammus, is described from the main stream of the Upper Lufira River. This species is easily distinguished from its congeners from the Congo Basin by its unique colouration, consisting of a low number of transversal bands on each of the caudal-fin lobes, 2 (vs. 3-5) and the presence of an uninterrupted lateral mid-longitudinal black band in fresh and preserved specimens (vs. absent). In addition, the new species differs from its Upper Lualaba congeners by the narrow width of its pectoral-fin base, 4.8-5.6% LS [vs. wider, 8.2-10.1% for P. lufirae, 8.6% LS for P. damasi (holotype), and 7.6-7.9% LS for P. thysi]. Finally, it differs from the only species currently known from the Luapula-Mweru system, P. malaissei, by having a short post-dorsal distance, 36.4-36.6% LS (vs. longer, 38.6-41.1% LS ) and a short post-pelvic distance of 40.0-40.6% LS (vs. longer, 41.4-44.1% LS ). Mitochondrial DNA-haplotypes of P. alytogrammus sp. nov. form a clade, which is sister to the P. thysi clade, and from which it diverges by a genetic (Kimura 2-parameter and uncorrected p) distance of 0.7% in the COI-barcoding locus. The Upper Lufira, one of the sub-basins of the Upper Congo Basin, remains poorly explored relative to its fish fauna. In contrast, the region is well explored with regard to its mineral wealth. Unfortunately, mining exploitation is carried out in the region without proper concern for the environment. Thus, the discovery of this new species for science calls for increased protection and aquatic biodiversity exploration in this mining region.


Asunto(s)
Código de Barras del ADN Taxonómico , Peces , Animales , República Democrática del Congo , Peces/genética , Biodiversidad
11.
Phys Chem Chem Phys ; 24(44): 27086-27104, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36326041

RESUMEN

The chemical and physical properties of atmospheric aerosol particles change upon oxidative ageing, influencing their interaction with radiation, their propensity to serve as nuclei for cloud condensation and ice formation, and their adverse effects on human health. The investigation of atmospheric aerosol oxidation processes is complicated by low oxidant concentrations and long timescales, which are difficult to represent in laboratory studies. Experimental work often attempts to compensate for short timescales with elevated concentrations of oxidative agents, assuming that the ageing progress depends only on the oxidant exposure, i.e. on the product of oxidant concentration and time, [Ox] × t, and not on [Ox] or t independently. The application of electrodynamic balance-mass spectrometry of single particles allows the validity of this assumption to be investigated, since it provides information on the molecular composition of aerosol particles for a wide range of reaction durations under well-defined oxidation conditions. Here, we demonstrate the capabilities of a new setup on levitated oleic acid droplets reacting with ozone at mixing ratios of 0.2 and 15 ppm, i.e. spanning almost two orders of magnitude in [Ox]. We show that the reactive removal of oleic acid can be accurately expressed as a function of ozone exposure [Ox] × t, whereas the product concentrations depend on [Ox] and t independently. As the underlying reason for the breakdown of the exposure metric, we suggest a competition between evaporation of volatile first-generation products and their accretion reactions with reactive Criegee intermediates, converting them into low-volatility dimers and oligomers. This hypothesis is supported by kinetic model simulations using the aerosol process model KM-SUB, which explicitly resolves the competition between evaporation and secondary chemistry as a function of the experimental timescale and ozone mixing ratio. The model successfully reproduces final product distributions. The findings are further supported by the recorded changes of droplet sizes during oxidation. As a heuristic, the breakdown of the exposure metric in a chemical reaction system is possible, when competition between first- and second-order processes of reactive intermediates determines important system properties.


Asunto(s)
Ácido Oléico , Ozono , Humanos , Ácido Oléico/química , Oxidantes , Aerosoles , Ozono/química , Espectrometría de Masas
12.
J Chem Phys ; 157(20): 204504, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36456240

RESUMEN

We report the accurate determination of solid-liquid equilibria using a novel molecular simulation method that can be used for solid-liquid equilibria from low to high pressures. A re-evaluation is reported of the solid-liquid equilibria of the noble gases interacting via ab initio two-body potentials combined with three-body interactions and quantum corrections and the results are compared with both existing simulation data and experimental values. The new simulation method yields results that are generally in closer agreement with the experiment than exiting methods, highlighting the important role of the method in fully understanding the interatomic interactions responsible for solid-liquid equilibria. The quality of the comparison of simulation results with the experiment indicates that the solid-liquid equilibria of the noble gases can be now predicted with exceptional accuracy over a large range of pressures.

13.
J Chem Phys ; 157(13): 135102, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209004

RESUMEN

Cysteine S-H bonds have a spectroscopically convenient stretching frequency of ∼2550 cm-1. However, their cross section is low, and the band can be strongly broadened in heterogeneous environments, making detection very challenging. With two-dimensional infrared (2D-IR) setups achieving ever higher sensitivities in recent years, systematic use of the weak cysteine sulfhydryls (Cys-SHs) absorption band is now within reach, even at low millimolar protein concentrations. Here, we demonstrate the capabilities of Cys-SH as an intrinsic 2D-IR label in pyruvate oxidase from E. coli, an enzyme with ten cysteines in its native sequence. 1D-IR measurements on the wild-type and individual cysteine knock-out variants show that two such residues have especially narrow SH signatures, caused by their intrahelical hydrogen bonding. 2D-IR analysis of these bands reveals an extraordinarily high anharmonicity (∼110 cm-1) and a long vibrational lifetime (∼4 ps). This allows monitoring spectral diffusion via center line slope analysis for up to 10 ps-separately for both the ground and excited states. The unique spectroscopic features and its ease of introduction make Cys-SH a useful IR spectroscopic label.


Asunto(s)
Cisteína , Escherichia coli , Cisteína/química , Enlace de Hidrógeno , Piruvato Oxidasa , Espectrofotometría Infrarroja/métodos
14.
Proc Natl Acad Sci U S A ; 116(34): 16697-16702, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31391310

RESUMEN

A detailed experimental investigation of Fe1+y Te (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field-induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.

15.
Proc Natl Acad Sci U S A ; 116(19): 9658-9664, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004061

RESUMEN

Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.


Asunto(s)
Biodiversidad , Evolución Biológica , Conservación de los Recursos Naturales , Extinción Biológica , Vertebrados/fisiología , Animales
16.
J Fish Biol ; 101(5): 1333-1342, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36053860

RESUMEN

The small cyprinid genus Prolabeops Schultz, 1941 is restricted to the Nyong and Sanaga River systems in Cameroon. In the past, the genus had been suggested to be either a member of the Labeoninae, Torinae or the Smiliogastrinae mainly on the basis of morphological similarities, and it is nowadays considered as incertae sedis within the Cypriniformes. This study provides the first attempt to reveal the phylogenetic position of Prolabeops using molecular data. For this purpose, the authors sequenced a large fraction of the mitochondrial genome (c. 13,600 bp), including all mitochondrial protein coding genes, of two Prolabeops melanhypopterus specimens and an additional four Enteromius specimens. The large-scale phylogenetic analysis was based on an alignment including all mitochondrial protein coding genes of 902 specimens representing c. 899 cypriniform species. Prolabeops was clearly recovered within the African Smiliogastrinae, forming a weakly supported clade together with Enteromius jae, Enteromius hulstaerti and Barboides gracilis. The study data underline the urgent need of a thorough taxonomic revision of the small African barbs collectively placed in the genus Enteromius.


Asunto(s)
Cyprinidae , Cipriniformes , Genoma Mitocondrial , Animales , Filogenia , Cipriniformes/genética , Cyprinidae/anatomía & histología , Proteínas Mitocondriales/genética
17.
J Fish Biol ; 100(5): 1171-1186, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35184288

RESUMEN

Several hundred catfish species (order: Siluriformes) belonging to 11 families inhabit Africa, of which at least six families are endemic to the continent. Although four of those families are well-known to belong to the 'Big-Africa clade', no previous study has addressed the phylogenetic placement of the endemic African catfish family Austroglanididae in a comprehensive framework with molecular data. Furthermore, interrelationships within the 'Big-Africa clade', including the most diverse family Mochokidae, remain unclear. This study was therefore designed to help reconstruct inter- and intrarelationships of all currently valid mochokid genera, to infer their position within the 'Big Africa clade' and to establish a first molecular phylogenetic hypothesis of the relationships of the enigmatic Austroglanididae within the Siluriformes. We assembled a comprehensive mitogenomic dataset comprising all protein coding genes and representing almost all recognized catfish families (N = 33 of 39) with carefully selected species (N = 239). We recovered the monophyly of the previously identified multifamily clades 'Big Asia' and 'Big Africa' and determined Austroglanididae to be closely related to Pangasiidae, Ictaluroidea and Ariidae. Mochokidae was recovered as the sister group to a clade encompassing Auchenoglanididae, Claroteidae, Malapteruridae and the African Schilbeidae, albeit with low statistical support. The two mochokid subfamilies Mochokinae and Chiloglanidinae as well as the chiloglanid tribe Atopochilini were recovered as reciprocally monophyletic. The genus Acanthocleithron forms the sister group of all remaining Mochokinae, although with low support. The genus Atopodontus is the sister group of all remaining Atopochilini. In contrast to morphological reconstructions, the monophyly of the genus Chiloglanis was strongly supported in our analysis, with Chiloglanis macropterus nested within a Chiloglanis sublineage encompassing only other taxa from the Congo drainage. This is an important result because the phylogenetic relationships of C. macropterus have been controversial in the past, and because we and other researchers assumed that this species would be resolved as sister to most or all other members of Chiloglanis. The apparent paraphyly of Synodontis with respect to Microsynodontis provided an additional surprise, with Synodontis punu turning out to be the sister group of the latter genus.


Asunto(s)
Bagres , África , Animales , Asia , Congo , Filogenia , Análisis de Secuencia de ADN
18.
Langmuir ; 37(37): 10945-10957, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34478317

RESUMEN

Molecular dynamics simulations were carried out to investigate cylindrical droplets consisting of binary mixtures of Lennard-Jones (LJ) fluids in contact with a solid substrate. The droplets are composed of mixtures of the monomeric LJ fluid plus linear-tangent chains of 2, 10, 20, and 30 segments per chain that interact through a harmonic potential and the spherically truncated and shifted potential Lennard-Jones. The solid surface was modeled as a semi-infinite platinum substrate with an FCC structure that interacts with the fluid by means of a LJ 9-3 potential. We place emphasis on the effect of mixing a monomeric LJ fluid with heavy components on the contact angle and on the droplet structure, especially in the liquid-solid region. The density profiles of the droplets reveal a strong discrete layering of the fluid in the vicinity of the solid-liquid interface. The layering is more pronounced at low temperatures and for mixtures of short chains (symmetric mixtures). The ordering of the fluid was much less intense for fluids of long chains (asymmetric mixtures), and some cases even show gas enrichment at the solid-liquid interface. Enrichment at the vapor-liquid interfaces and density inversion can also be observed. However, these effects are not as marked as in planar interfaces. The contact angle between the droplet and the substrate is calculated by fitting an ellipse to the vapor-liquid interface defined by the Gibbs dividing surface. In general, an increment in the concentration of the heavy component and a reduction of the temperature resulted in an increase of the contact angle, which in turn disfavored the wetting of the droplet.

19.
J Thromb Thrombolysis ; 51(2): 494-501, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32594420

RESUMEN

The role of the A>G polymorphism at position 19911 in the prothrombin gene (factor [F] 2 at rs3136516) as a risk factor for venous thromboembolism [VTE] is still unclear. To evaluate the presence of the F2 polymorphism in VTE patients compared to healthy blood donors and to adjust the results for common inherited thrombophilias [IT], age at onset and blood group [BG], and to calculate the risk of VTE recurrence. We investigated 1012 Caucasian patients with a diagnosis of VTE for the presence of the F2 rs3136516 polymorphism and compared these with 902 healthy blood donors. Odds ratios [OR] together with their 95% confidence intervals were calculated adjusted for F5 at rs6025, F2 at rs1799963, blood group, age and gender. In addition, we evaluated the risk of recurrent VTE during patient follow-up calculating hazard ratios [HR] together with their 95% CI. Compared with the AA wildtype, the F2 GG and AG genotypes (rs3136516) were associated with VTE (OR 1.48 and 1.45). The OR in F5 carriers compared to controls was 5.68 and 2.38 in patients with F2 (rs1799963). BG "non-O" was significantly more often diagnosed in patients compared to BG "O" (OR 2.74). VTE recurrence more often occurred in males (HR 2.3) and in carriers with combined thrombophilia (HR 2.11). Noteworthy, the rs3136516 polymorphism alone was not associated significantly with recurrence. In Caucasian patients with VTE the F2 GG/GA genotypes (rs3136516) were moderate risk factors for VTE. Recurrence was associated with male gender and combined thrombophilia.


Asunto(s)
Antígenos de Grupos Sanguíneos , Polimorfismo de Nucleótido Simple , Protrombina/genética , Tromboembolia Venosa/genética , Adulto , Antígenos de Grupos Sanguíneos/sangre , Femenino , Predisposición Genética a la Enfermedad , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Factores Sexuales , Tromboembolia Venosa/sangre , Tromboembolia Venosa/etiología , Adulto Joven
20.
J Chem Phys ; 154(8): 084704, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639748

RESUMEN

Binary mixtures of fully flexible linear tangent chains composed of bonded Lennard-Jones interaction sites (monomers) were studied using the molecular dynamics simulation in the NVT ensemble. Their interfacial properties were investigated in planar interfaces by direct simulation of an explicit liquid film in equilibrium with its vapor. A method for the calculation of long-range interactions in inhomogeneous fluids was implemented to take into account the potential truncation effects. Surface tension and the pressure tensor were calculated via the classical Irving-Kirkwood method; vapor pressure, orthobaric densities, density profiles, and Gibbs relative adsorption of the volatile component with respect to the heavy component were also obtained. The properties were studied as a function of the temperature, molar concentration of the heavy component, and the asymmetry of the mixture. According to the results of this work, the temperature loses influence on the surface tension, vapor pressure, and Gibbs relative adsorption curves as the molecular length of the heavy component increases. This suggests that the universal behavior observed in pure fluids of Lennard-Jones chains also holds for binary mixtures. The contribution of the long-range interactions turned out to account for about 60%, 20%, and 10% of the surface tension, vapor pressure, and orthobaric density final values, respectively. This contribution was even larger at high temperatures and for large molecules. Strong enrichment of the volatile component at the interface was observed in the asymmetric mixtures. One of these mixtures even showed a barotropic effect at elevated pressures and a class III phase behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA