Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(36): E3425-34, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23959876

RESUMEN

Vision loss from ischemic retinopathies commonly results from the accumulation of fluid in the inner retina [macular edema (ME)]. Although the precise events that lead to the development of ME remain under debate, growing evidence supports a role for an ischemia-induced hyperpermeability state regulated, in part, by VEGF. Monthly treatment with anti-VEGF therapies is effective for the treatment of ME but results in a major improvement in vision in a minority of patients, underscoring the need to identify additional therapeutic targets. Using the oxygen-induced retinopathy mouse model for ischemic retinopathy, we provide evidence showing that hypoxic Müller cells promote vascular permeability by stabilizing hypoxia-inducible factor-1α (HIF-1α) and secreting angiogenic cytokines. Blocking HIF-1α translation with digoxin inhibits the promotion of endothelial cell permeability in vitro and retinal edema in vivo. Interestingly, Müller cells require HIF--but not VEGF--to promote vascular permeability, suggesting that other HIF-dependent factors may contribute to the development of ME. Using gene expression analysis, we identify angiopoietin-like 4 (ANGPTL4) as a cytokine up-regulated by HIF-1 in hypoxic Müller cells in vitro and the ischemic inner retina in vivo. ANGPTL4 is critical and sufficient to promote vessel permeability by hypoxic Müller cells. Immunohistochemical analysis of retinal tissue from patients with diabetic eye disease shows that HIF-1α and ANGPTL4 localize to ischemic Müller cells. Our results suggest that ANGPTL4 may play an important role in promoting vessel permeability in ischemic retinopathies and could be an important target for the treatment of ME.


Asunto(s)
Angiopoyetinas/metabolismo , Permeabilidad Capilar , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas Retinianas/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Animales , Western Blotting , Hipoxia de la Célula , Células Cultivadas , Retinopatía Diabética/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunohistoquímica , Isquemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Neuronas Retinianas/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Cardiovasc Diagn Ther ; 5(5): 394-402, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26543826

RESUMEN

Diabetes, obesity, and dyslipidemia are main risk factors that promote the development of cardiovascular diseases. These metabolic abnormalities are frequently found to be associated together in a highly morbid clinical condition called metabolic syndrome. Metabolic derangements promote endothelial dysfunction, atherosclerotic plaque formation and rupture, cardiac remodeling and dysfunction. This evidence strongly encourages the elucidation of the mechanisms through which obesity, diabetes, and metabolic syndrome induce cellular abnormalities and dysfunction in order to discover new therapeutic targets and strategies for their prevention and treatment. Numerous studies employing both dietary and genetic animal models of obesity and diabetes have demonstrated that autophagy, an intracellular system for protein degradation, is impaired in the heart under these conditions. This suggests that autophagy reactivation may represent a future potential therapeutic intervention to reduce cardiac maladaptive alterations in patients with metabolic derangements. In fact, autophagy is a critical mechanism to preserve cellular homeostasis and survival. In addition, the physiological activation of autophagy protects the heart during stress, such as acute ischemia, starvation, chronic myocardial infarction, pressure overload, and proteotoxic stress. All these aspects will be discussed in our review article together with the potential ways to reactivate autophagy in the context of obesity, metabolic syndrome, and diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA