Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266901

RESUMEN

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Asunto(s)
Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Almidón/metabolismo , beta-Amilasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Proteínas Portadoras , Clonación Molecular , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Fosforilación , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes , Alineación de Secuencia , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilasa/genética
2.
Plant Cell ; 25(4): 1400-15, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23632447

RESUMEN

The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches--factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans.


Asunto(s)
Glucógeno/biosíntesis , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Urticaceae/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Electroforesis en Gel de Poliacrilamida , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Microscopía Electrónica de Transmisión , Modelos Genéticos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteoma/genética , Proteoma/metabolismo , Proteómica , Análisis de Secuencia de ARN , Solubilidad , Almidón/ultraestructura , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Espectrometría de Masas en Tándem , Transcriptoma , Urticaceae/genética
3.
Plant Cell ; 20(12): 3448-66, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19074683

RESUMEN

Several studies have suggested that debranching enzymes (DBEs) are involved in the biosynthesis of amylopectin, the major constituent of starch granules. Our systematic analysis of all DBE mutants of Arabidopsis thaliana demonstrates that when any DBE activity remains, starch granules are still synthesized, albeit with altered amylopectin structure. Quadruple mutants lacking all four DBE proteins (Isoamylase1 [ISA1], ISA2, and ISA3, and Limit-Dextrinase) are devoid of starch granules and instead accumulate highly branched glucans, distinct from amylopectin and from previously described phytoglycogen. A fraction of these glucans are present as discrete, insoluble, nanometer-scale particles, but the structure and properties of this material are radically altered compared with wild-type amylopectin. Superficially, these data support the hypothesis that debranching is required for amylopectin synthesis. However, our analyses show that soluble glucans in the quadruple DBE mutant are degraded by alpha- and beta-amylases during periods of net accumulation, giving rise to maltose and branched malto-oligosaccharides. The additional loss of the chloroplastic alpha-amylase AMY3 partially reverts the phenotype of the quadruple DBE mutant, restoring starch granule biosynthesis. We propose that DBEs function in normal amylopectin synthesis by promoting amylopectin crystallization but conclude that they are not mandatory for starch granule synthesis.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/metabolismo , Glicósido Hidrolasas/fisiología , Isoamilasa/fisiología , Almidón/biosíntesis , alfa-Amilasas/fisiología , Amilopectina/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Microscopía por Crioelectrón , Glicósido Hidrolasas/genética , Isoamilasa/genética , Maltosa/metabolismo , Oligosacáridos/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/genética , alfa-Amilasas/genética
4.
Funct Plant Biol ; 34(6): 465-473, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32689375

RESUMEN

The aim of this article is to provide an overview of current models of starch breakdown in leaves. We summarise the results of our recent work focusing on Arabidopsis, relating them to other work in the field. Early biochemical studies of starch containing tissues identified numerous enzymes capable of participating in starch degradation. In the non-living endosperms of germinated cereal seeds, starch breakdown proceeds by the combined actions of α-amylase, limit dextrinase (debranching enzyme), ß-amylase and α-glucosidase. The activities of these enzymes and the regulation of some of the respective genes on germination have been extensively studied. In living plant cells, additional enzymes are present, such as α-glucan phosphorylase and disproportionating enzyme, and the major pathway of starch breakdown appears to differ from that in the cereal endosperm in some important aspects. For example, reverse-genetic studies of Arabidopsis show that α-amylase and limit-dextrinase play minor roles and are dispensable for starch breakdown in leaves. Current data also casts doubt on the involvement of α-glucosidase. In contrast, several lines of evidence point towards a major role for ß-amylase in leaves, which functions together with disproportionating enzyme and isoamylase (debranching enzyme) to produce maltose and glucose. Furthermore, the characterisation of Arabidopsis mutants with elevated leaf starch has contributed to the discovery of previously unknown proteins and metabolic steps in the pathway. In particular, it is now apparent that glucan phosphorylation is required for normal rates of starch mobilisation to occur, although a detailed understanding of this step is still lacking. We use this review to give a background to some of the classical genetic mutants that have contributed to our current knowledge.

5.
J Biol Chem ; 281(17): 12050-9, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16495218

RESUMEN

The aim of this work was to understand the initial steps of starch breakdown inside chloroplasts. In the non-living endosperm of germinating cereal grains, starch breakdown is initiated by alpha-amylase secreted from surrounding cells. However, loss of alpha-amylase from Arabidopsis does not prevent chloroplastic starch breakdown (Yu, T.-S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W.-L., Hegemann, B., Tung, S.-Y., Umemoto, T., Chapple, A., Tsai, D.-L., Wang, S.-M, Smith, A. M., Chen, J., and Smith, S. M. (2005) J. Biol. Chem. 280, 9773-9779), implying that other enzymes must attack the starch granule. Here, we present evidence that the debranching enzyme isoamylase 3 (ISA3) acts at the surface of the starch granule. Atisa3 mutants have more leaf starch and a slower rate of starch breakdown than wild-type plants. The amylopectin of Atisa3 contains many very short branches and ISA3-GFP localizes to granule-like structures inside chloroplasts. We suggest that ISA3 removes short branches from the granule surface. To understand how some starch is still degraded in Atisa3 mutants we eliminated a second debranching enzyme, limit dextrinase (pullulanase-type). Atlda mutants are indistinguishable from the wild type. However, the Atisa3/Atlda double mutant has a more severe starch-excess phenotype and a slower rate of starch breakdown than Atisa3 single mutants. The double mutant accumulates soluble branched oligosaccharides (limit dextrins) that are undetectable in the wild-type and the single mutants. Together these results suggest that glucan debranching occurs primarily at the granule surface via ISA3, but in its absence soluble branched glucans are debranched in the stroma via limit dextrinase. Consistent with this model, chloroplastic alpha-amylase AtAMY3, which could release soluble branched glucans, is induced in Atisa3 and in the Atisa3/Atlda double mutant.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glicósido Hidrolasas/metabolismo , Isoamilasa/metabolismo , Almidón/metabolismo , Amilopectina/metabolismo , Arabidopsis/genética , Cloroplastos/genética , Dextrinas/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas/genética , Isoamilasa/genética , Mutación , Fenotipo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Almidón/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA