Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37073556

RESUMEN

Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.


Asunto(s)
Mitocondrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Plant Cell ; 26(11): 4270-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25415976

RESUMEN

We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions.


Asunto(s)
Aclimatación , Chlamydomonas reinhardtii/fisiología , Metaboloma , Chaperonas Moleculares/metabolismo , Proteoma , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Calor , Lípidos/análisis , Chaperonas Moleculares/genética , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Cell ; 24(2): 637-59, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22307852

RESUMEN

The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b(6)f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the Q(A)/Q(A)(-) redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids.


Asunto(s)
Chlamydomonas/metabolismo , Proteínas de la Membrana/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Chlamydomonas/genética , Chlamydomonas/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de la Membrana/genética , Mutación , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteómica , Interferencia de ARN , Tilacoides/ultraestructura
4.
Appl Spectrosc ; 74(9): 1155-1160, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32186214

RESUMEN

Microplastics (MPs) have been reported in various environmental compartments and their number is continuously increasing because of degradation into smaller fragments down to nanoplastics. Humans are exposed to these small-sized MPs through food and air with potential health consequences that still need to be determined. This requires, in the first place, efficient and detailed visualization, relocalization, and characterization of the same MPs with complementary analytical methods. Here, we show the first application of a correlative microscopy and spectroscopy workflow to MPs that meets these demands. For this purpose, standard MP particles on aluminum-coated polycarbonate membrane filters were investigated by an optical zoom microscope and a hyphenated scanning electron microscopy (SEM)-Raman system. By merging the obtained data in one software, it is possible to navigate on the entire filters' surface and correlate at identical locations MP morphology at the spatial resolutions of electron (1.6 nm at 1 kV for the used SEM, ∼100 nm minimum MP size in this study) and optical (∼1-10 µm) microscopies with chemical identification by micro-Raman spectroscopy. Moreover, we observed that low-voltage SEM works without a conductive coating of MPs, causes no detectable charging and structural changes, and provides high-resolution surface imaging of single and clustered MP particles, thus enabling subsequent Raman measurements. We believe that further work on the accurate identification and quantification of micro- and nanoplastics in real samples can potentially profit from this workflow.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Microplásticos/análisis , Microscopía/métodos , Espectrometría Raman/métodos
5.
Methods Mol Biol ; 1567: 33-42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276011

RESUMEN

The budding yeast Saccharomyces cerevisiae is an important model organism to study cellular structure and function. Due to its excellent accessibility to genetics and biochemical and microscopic analyses, studies with yeast have provided fundamental insights into mitochondrial biology. Yeast offers additional advantages because it can grow under fermenting conditions when oxidative phosphorylation is not obligatory and because the majority of mitochondrial structure and function are largely conserved during evolution. Isolation of mitochondria is an important technique for mitochondrial studies. This chapter focuses on procedures for the isolation and purification of intact yeast mitochondria that can be used for numerous functional assays as well as for analyses of mitochondrial ultrastructure.


Asunto(s)
Fraccionamiento Celular/métodos , Mitocondrias , Saccharomyces cerevisiae , Centrifugación por Gradiente de Densidad/métodos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/metabolismo
6.
Methods Mol Biol ; 1567: 293-314, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276026

RESUMEN

Budding yeast Saccharomyces cerevisiae represents a widely used model organism for the study of mitochondrial biogenesis and architecture. Electron microscopy is an essential tool in the analysis of cellular ultrastructure and the precise localization of proteins to organellar subcompartments. We provide here detailed protocols for the analysis of yeast mitochondria by transmission electron microscopy: (1) chemical fixation and Epon embedding of yeast cells and isolated mitochondria, and (2) cryosectioning and immunolabeling of yeast cells and isolated mitochondria according to the Tokuyasu method.


Asunto(s)
Microscopía Electrónica , Mitocondrias/ultraestructura , Levaduras/ultraestructura , Crioultramicrotomía/métodos , Microscopía Electrónica/métodos , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Orgánulos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Flujo de Trabajo
7.
Elife ; 52016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849155

RESUMEN

Metabolic function and architecture of mitochondria are intimately linked. More than 60 years ago, cristae were discovered as characteristic elements of mitochondria that harbor the protein complexes of oxidative phosphorylation, but how cristae are formed, remained an open question. Here we present experimental results obtained with yeast that support a novel hypothesis on the existence of two molecular pathways that lead to the generation of lamellar and tubular cristae. Formation of lamellar cristae depends on the mitochondrial fusion machinery through a pathway that is required also for homeostasis of mitochondria and mitochondrial DNA. Tubular cristae are formed via invaginations of the inner boundary membrane by a pathway independent of the fusion machinery. Dimerization of the F1FO-ATP synthase and the presence of the MICOS complex are necessary for both pathways. The proposed hypothesis is suggested to apply also to higher eukaryotes, since the key components are conserved in structure and function throughout evolution.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Expresión Génica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Biogénesis de Organelos , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Elife ; 3: e01684, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24714493

RESUMEN

Structure and function of mitochondria are intimately linked. In a search for components that participate in building the elaborate architecture of this complex organelle we have identified Aim24, an inner membrane protein. Aim24 interacts with the MICOS complex that is required for the formation of crista junctions and contact sites between inner and outer membranes. Aim24 is necessary for the integrity of the MICOS complex, for normal respiratory growth and mitochondrial ultrastructure. Modification of MICOS subunits Mic12 or Mic26 by His-tags in the absence of Aim24 leads to complete loss of cristae and respiratory complexes. In addition, the level of tafazzin, a cardiolipin transacylase, is drastically reduced and the composition of cardiolipin is modified like in mutants lacking tafazzin. In conclusion, Aim24 by interacting with the MICOS complex plays a key role in mitochondrial architecture, composition and function. DOI: http://dx.doi.org/10.7554/eLife.01684.001.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Biogénesis de Organelos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Oxidación-Reducción , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA