Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 21(3): e49776, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067344

RESUMEN

The mitochondrial inner membrane can reshape under different physiological conditions. How, at which frequency this occurs in living cells, and the molecular players involved are unknown. Here, we show using state-of-the-art live-cell stimulated emission depletion (STED) super-resolution nanoscopy that neighbouring crista junctions (CJs) dynamically appose and separate from each other in a reversible and balanced manner in human cells. Staining of cristae membranes (CM), using various protein markers or two lipophilic inner membrane-specific dyes, further revealed that cristae undergo continuous cycles of membrane remodelling. These events are accompanied by fluctuations of the membrane potential within distinct cristae over time. Both CJ and CM dynamics depended on MIC13 and occurred at similar timescales in the range of seconds. Our data further suggest that MIC60 acts as a docking platform promoting CJ and contact site formation. Overall, by employing advanced imaging techniques including fluorescence recovery after photobleaching (FRAP), single-particle tracking (SPT), live-cell STED and high-resolution Airyscan microscopy, we propose a model of CJ dynamics being mechanistically linked to CM remodelling representing cristae membrane fission and fusion events occurring within individual mitochondria.


Asunto(s)
Membranas Mitocondriales , Proteínas Mitocondriales , Células HeLa , Humanos , Mitocondrias , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1863(12): 183683, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271005

RESUMEN

Mitochondrial ultrastructure is highly adaptable and undergoes dynamic changes upon physiological and energetic cues. MICOS (mitochondrial contact site and cristae organizing system), a large oligomeric protein complex, maintains mitochondrial ultrastructure as it is required for formation of crista junctions (CJs) and contact sites. MIC13 acts as a critical bridge between two MICOS subcomplexes. Deletion of MIC13 causes loss of CJs resulting in cristae accumulating as concentric rings and specific destabilization of the MIC10-subcomplex. Mutations in MIC13 are associated with infantile lethal mitochondrial hepato-encephalopathy, yet functional regions within MIC13 were not known. To identify and characterize such regions, we systemically generated 20 amino-acids deletion variants across the length of MIC13. While deletion of many of these regions of MIC13 is dispensable for its stability, the N-terminal region and a stretch between amino acid residues 84 and 103 are necessary for the stability and functionality of MIC13. We could further locate conserved motifs within these regions and found that a GxxxG motif in the N-terminal transmembrane segment and an internal WN motif are essential for stability of MIC13, formation of the MIC10-subcomplex, interaction with MIC10- and MIC60-subcomplexes and maintenance of cristae morphology. The GxxxG motif is required for membrane insertion of MIC13. Overall, we systematically found important conserved residues of MIC13 that are required to perform the bridging between the two MICOS subcomplexes. The study improves our understanding of the basic molecular function of MIC13 and has implications for its role in the pathogenesis of a severe mitochondrial disease.


Asunto(s)
Proteína Cofactora de Membrana/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Secuencias de Aminoácidos/genética , Aminoácidos/genética , Eliminación de Gen , Humanos , Mitocondrias/patología , Encefalomiopatías Mitocondriales/patología , Membranas Mitocondriales/metabolismo , Mutación/genética , Mapas de Interacción de Proteínas/genética
3.
Aging (Albany NY) ; 9(10): 2163-2189, 2017 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-29081403

RESUMEN

The stress-responsive mitochondrial sirtuin SIRT4 controls cellular energy metabolism in a NAD+-dependent manner and is implicated in cellular senescence and aging. Here we reveal a novel function of SIRT4 in mitochondrial morphology/quality control and regulation of mitophagy. We report that moderate overexpression of SIRT4, but not its enzymatically inactive mutant H161Y, sensitized cells to mitochondrial stress. CCCP-triggered dissipation of the mitochondrial membrane potential resulted in increased mitochondrial ROS levels and autophagic flux, but surprisingly led to increased mitochondrial mass and decreased Parkin-regulated mitophagy. The anti-respiratory effect of elevated SIRT4 was accompanied by increased levels of the inner-membrane bound long form of the GTPase OPA1 (L-OPA1) that promotes mitochondrial fusion and thereby counteracts fission and mitophagy. Consistent with this, upregulation of endogenous SIRT4 expression in fibroblast models of senescence either by transfection with miR-15b inhibitors or by ionizing radiation increased L-OPA1 levels and mitochondrial fusion in a SIRT4-dependent manner. We further demonstrate that SIRT4 interacts physically with OPA1 in co-immunoprecipitation experiments. Overall, we propose that the SIRT4-OPA1 axis is causally linked to mitochondrial dysfunction and altered mitochondrial dynamics that translates into aging-associated decreased mitophagy based on an unbalanced mitochondrial fusion/fission cycle.


Asunto(s)
Envejecimiento/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Sirtuinas/metabolismo , Envejecimiento/patología , Células Cultivadas , Senescencia Celular/fisiología , Células HEK293 , Humanos , Mitocondrias/patología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
4.
PLoS One ; 11(8): e0160258, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27479602

RESUMEN

Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Mitocondriales/química , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Fosforilación Oxidativa , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA