Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 145(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36421028

RESUMEN

The goal of this work was to collect on-track driver head kinematics using instrumented mouthpieces and characterize environmental exposure to accelerations and vibrations. Six NASCAR drivers were instrumented with custom-fit mouthpieces to collect head kinematic data. Devices were deployed at four tracks during practice and testing environments and configured to collect approximately 11 min of linear acceleration and rotational velocity data at 200 Hz. This continuous data collection, combined with film review, allowed extraction of complete laps of data. In addition to typical data processing methods, a moving-point average was calculated and subtracted from the overall signal for both linear acceleration and rotational velocity to determine the environmental component of head motion. The current analysis focuses on 42 full laps of data collected at four data collection events. The number of laps per track ranged from 2 to 23. Linear acceleration magnitudes for all 42 laps ranged from 2.46 to 7.48 g and rotational velocity ranged from 1.25 to 3.35 rad/s. After subtracting the moving average, linear acceleration ranged from 0.92 to 5.45 g and rotational velocity ranged from 0.57 to 2.05 rad/s. This study has established the feasibility of using an instrumented mouthpiece to measure head kinematics in NASCAR and presented a technique for isolating head motion due to cornering acceleration from those due to short-term perturbations experienced by the driver.

2.
J Appl Biomech ; 39(4): 209-216, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210079

RESUMEN

Soccer, one of the most popular sports in the world, has one of the highest rates of sports-related concussions. Additionally, soccer players are frequently exposed to nonconcussive impacts from intentionally heading the ball, a fundamental component of the sport. There have been many studies on head impact exposure in soccer, but few focus on soccer practices or practice activities. This study aimed to characterize the frequency and magnitude of head impacts in National Collegiate Athletic Association Division I female soccer practice activities using a custom-fit instrumented mouthpiece. Sixteen players were instrumented over the course of 54 practice sessions. Video analysis was performed to verify all mouthpiece-recorded events and classify practice activities. Category groupings of practice activities include technical training, team interaction, set pieces, position-specific, and other. Differences in head impact rates and peak resultant kinematics were observed across activity types and category groupings. Technical training had the highest impact rate compared to other category groupings. Impacts occurring during set piece activities had the highest mean kinematic values. Understanding drill exposure can help inform coaches on training plans aimed to reduce head impact exposure for their athletes.


Asunto(s)
Conmoción Encefálica , Fútbol , Humanos , Femenino , Cabeza , Atletas , Universidades
3.
J Appl Biomech ; 39(3): 157-168, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105545

RESUMEN

Many head acceleration events (HAEs) observed in youth football emanate from a practice environment. This study aimed to evaluate HAEs in youth football practice drills using a mouthpiece-based sensor, differentiating between inertial and direct HAEs. Head acceleration data were collected from athletes participating on 2 youth football teams (ages 11-13 y) using an instrumented mouthpiece-based sensor during all practice sessions in a single season. Video was recorded and analyzed to verify and assign HAEs to specific practice drill characteristics, including drill intensity, drill classification, and drill type. HAEs were quantified in terms of HAEs per athlete per minute and peak linear and rotational acceleration and rotational velocity. Mixed-effects models were used to evaluate the differences in kinematics, and generalized linear models were used to assess differences in HAE frequency between drill categories. A total of 3237 HAEs were verified and evaluated from 29 football athletes enrolled in this study. Head kinematics varied significantly between drill categorizations. HAEs collected at higher intensities resulted in significantly greater kinematics than lower-intensity drills. The results of this study add to the growing body of evidence informing evidence-based strategies to reduce head impact exposure and concussion risk in youth football practices.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Humanos , Adolescente , Cabeza , Aceleración
4.
Res Sports Med ; 31(4): 440-450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34689676

RESUMEN

Ice hockey has one of the highest concussion rates among youth sports. Sensor technology has been implemented in contact and collision sports to inform the frequency and severity of head impacts experienced on-ice. However, existing studies have utilized helmet-mounted sensors with limited accuracy. The objective of this study was to characterize head kinematics of contact events in a sample of youth boys' hockey players using a validated instrumented mouthpiece with improved accuracy. Head kinematics from 892 video-verified events were recorded from 18 athletes across 127 sessions. Median peak resultant linear acceleration, rotational velocity, and rotational acceleration of video-verified events were 7.4 g, 7.7 rad/s, and 576 rad/s2, respectively. Contact events occurred at a higher rate in games (2.48 per game) than practices (1.30 per practice). Scenarios involving head contact had higher peak kinematics than those without head contact. This study improves our understanding of head kinematics in boys' youth hockey.


Asunto(s)
Conmoción Encefálica , Hockey , Masculino , Humanos , Adolescente , Atletas , Dispositivos de Protección de la Cabeza , Fenómenos Biomecánicos , Aceleración
5.
J Appl Biomech ; 38(3): 136-147, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483702

RESUMEN

Head impact exposure is often quantified using peak resultant kinematics. While kinematics describes the inertial response of the brain to impact, they do not fully capture the dynamic brain response. Strain, a measure of the tissue-level response of the brain, may be a better predictor of injury. In this study, kinematic and strain metrics were compared to contact characteristics in youth football. Players on 2 opposing teams were instrumented with head impact sensors to record impact kinematics. Video was collected to identify contact scenarios involving opposing instrumented players (ie, paired contact scenarios) and code contact characteristics (eg, player role, impact location). A previously validated, high-resolution brain finite element model, the atlas-based brain model, was used to simulate head impacts and calculate strain metrics. Fifty-two paired contact scenarios (n = 105 impacts) were evaluated. Lighter players tended to have greater biomechanical metrics compared to heavier players. Impacts to the top of the helmet were associated with lower strain metrics. Overall, strain was better correlated with rotational kinematics, suggesting these metrics may be better predictors of the tissue-level brain response than linear kinematics. Understanding the effect of contact characteristics on brain strain will inform future efforts to improve sport safety.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Aceleración , Adolescente , Fenómenos Biomecánicos , Encéfalo , Fútbol Americano/lesiones , Cabeza , Dispositivos de Protección de la Cabeza , Humanos
6.
J Appl Biomech ; 38(4): 201-209, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35894976

RESUMEN

Hockey is a fast-paced sport known for body checking, or intentional collisions used to separate opponents from the puck. Exposure to these impacts is concerning, as evidence suggests head impact exposure (HIE), even if noninjurious, can cause long-term brain changes. Currently, there is limited understanding of the effect of impact direction and collision speed on HIE. Video analysis was used to determine speed and direction for 162 collisions from 13 youth athletes. These data were paired with head kinematic data collected with an instrumented mouthpiece. Relationships between peak resultant head kinematics and speeds were evaluated with linear regression. Mean athlete speeds and relative velocity between athletes ranged from 2.05 to 2.76 m/s. Mean peak resultant linear acceleration, rotational velocity, and rotational acceleration were 13.1 g, 10.5 rad/s, and 1112 rad/s2, respectively. Significant relationships between speeds and head kinematics emerged when stratified by contact characteristics. HIE also varied by direction of collision; most collisions occurred in the forward-oblique (ie, offset from center) direction; frontal collisions had the greatest magnitude peak kinematics. These findings indicate that HIE in youth hockey is influenced by speed and direction of impact. This study may inform future strategies to reduce the severity of HIE in hockey.


Asunto(s)
Conmoción Encefálica , Hockey , Aceleración , Adolescente , Fenómenos Biomecánicos , Cabeza , Dispositivos de Protección de la Cabeza , Humanos
7.
J Appl Biomech ; 38(1): 2-11, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34911036

RESUMEN

Soccer players are regularly exposed to head impacts by intentionally heading the ball. Evidence suggests repetitive subconcussive head impacts may affect the brain, and females may be more vulnerable to brain injury than males. This study aimed to characterize head impact exposure among National Collegiate Athletic Association women's soccer players using a previously validated mouthpiece-based sensor. Sixteen players were instrumented during 72 practices and 24 games. Head impact rate and rate of risk-weighted cumulative exposure were compared across session type and player position. Head kinematics were compared across session type, impact type, player position, impact location, and ball delivery method. Players experienced a mean (95% confidence interval) head impact rate of 0.468 (0.289 to 0.647) head impacts per hour, and exposure rates varied by session type and player position. Headers accounted for 89% of head impacts and were associated with higher linear accelerations and rotational accelerations than nonheader impacts. Headers in which the ball was delivered by a long kick had greater peak kinematics (all P < .001) than headers in which the ball was delivered by any other method. Results provide increased understanding of head impact frequency and magnitude in women's collegiate soccer and may help inform efforts to prevent brain injury.


Asunto(s)
Conmoción Encefálica , Fútbol , Aceleración , Atletas , Conmoción Encefálica/epidemiología , Femenino , Cabeza , Humanos , Masculino , Universidades
8.
Hum Brain Mapp ; 42(8): 2529-2545, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33734521

RESUMEN

Repetitive head impact (RHI) exposure in collision sports may contribute to adverse neurological outcomes in former players. In contrast to a concussion, or mild traumatic brain injury, "subconcussive" RHIs represent a more frequent and asymptomatic form of exposure. The neural network-level signatures characterizing subconcussive RHIs in youth collision-sport cohorts such as American Football are not known. Here, we used resting-state functional MRI to examine default mode network (DMN) functional connectivity (FC) following a single football season in youth players (n = 50, ages 8-14) without concussion. Football players demonstrated reduced FC across widespread DMN regions compared with non-collision sport controls at postseason but not preseason. In a subsample from the original cohort (n = 17), players revealed a negative change in FC between preseason and postseason and a positive and compensatory change in FC during the offseason across the majority of DMN regions. Lastly, significant FC changes, including between preseason and postseason and between in- and off-season, were specific to players at the upper end of the head impact frequency distribution. These findings represent initial evidence of network-level FC abnormalities following repetitive, non-concussive RHIs in youth football. Furthermore, the number of subconcussive RHIs proved to be a key factor influencing DMN FC.


Asunto(s)
Traumatismos en Atletas/fisiopatología , Conmoción Encefálica/fisiopatología , Corteza Cerebral/fisiopatología , Conectoma , Red en Modo Predeterminado/fisiopatología , Adolescente , Traumatismos en Atletas/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Niño , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Fútbol Americano , Humanos , Imagen por Resonancia Magnética , Masculino
9.
J Int Neuropsychol Soc ; 27(2): 113-123, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32762785

RESUMEN

OBJECTIVES: Head impact exposure (HIE) in youth football is a public health concern. The objective of this study was to determine if one season of HIE in youth football was related to cognitive changes. METHOD: Over 200 participants (ages 9-13) wore instrumented helmets for practices and games to measure the amount of HIE sustained over one season. Pre- and post-season neuropsychological tests were completed. Test score changes were calculated adjusting for practice effects and regression to the mean and used as the dependent variables. Regression models were calculated with HIE variables predicting neuropsychological test score changes. RESULTS: For the full sample, a small effect was found with season average rotational values predicting changes in list-learning such that HIE was related to negative score change: standardized beta (ß) = -.147, t(205) = -2.12, and p = .035. When analyzed by age clusters (9-10, 11-13) and adding participant weight to models, the R2 values increased. Splitting groups by weight (median split), found heavier members of the 9-10 cohort with significantly greater change than lighter members. Additionaly, significantly more participants had clinically meaningful negative changes: X2 = 10.343, p = .001. CONCLUSION: These findings suggest that in the 9-10 age cluster, the average seasonal level of HIE had inverse, negative relationships with cognitive change over one season that was not found in the older group. The mediation effects of age and weight have not been explored previously and appear to contribute to the effects of HIE on cognition in youth football players.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Fútbol , Adolescente , Conmoción Encefálica/epidemiología , Conmoción Encefálica/etiología , Niño , Dispositivos de Protección de la Cabeza , Humanos , Pruebas Neuropsicológicas , Estaciones del Año
10.
J Appl Biomech ; 37(1): 36-42, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152691

RESUMEN

The objective of this research was to characterize head impacts with a validated mouthpiece sensor in competitive youth female soccer players during a single season with a validated mouthpiece sensor. Participants included 14 youth female soccer athletes across 2 club-level teams at different age levels (team 1, ages 12-13 y; team 2, ages 14-15 y). Head impact and time-synchronized video data were collected for 66 practices and games. Video data were reviewed to characterize the type and frequency of contact experienced by each athlete. A total of 2216 contact scenarios were observed; heading the ball (n = 681, 30.7%) was most common. Other observed contact scenarios included collisions, dives, falls, and unintentional ball contact. Team 1 experienced a higher rate of headers per player per hour of play than team 2, while team 2 experienced a higher rate of collisions and dives. A total of 935 video-verified contact scenarios were concurrent with recorded head kinematics. While headers resulted in a maximum linear acceleration of 56.1g, the less frequent head-to-head collisions (n = 6) resulted in a maximum of 113.5g. The results of this study improve the understanding of head impact exposure in youth female soccer players and inform head impact exposure reduction in youth soccer.


Asunto(s)
Cabeza , Fútbol , Aceleración , Adolescente , Atletas , Fenómenos Biomecánicos , Niño , Femenino , Humanos , Grabación en Video , Deportes Juveniles
11.
J Appl Biomech ; 37(2): 145-155, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33482629

RESUMEN

To reduce head impact exposure (HIE) in youth football, further understanding of the context in which head impacts occur and the associated biomechanics is needed. The objective of this study was to evaluate the effect of contact characteristics on HIE during player versus player contact scenarios in youth football. Head impact data and time-synchronized video were collected from 4 youth football games over 2 seasons in which opposing teams were instrumented with the Head Impact Telemetry (HIT) System. Coded contact characteristics included the player's role in the contact, player speed and body position, contact height, type, and direction, and head contact surface. Head accelerations were compared among the contact characteristics using mixed-effects models. Among 72 instrumented athletes, 446 contact scenarios (n = 557 impacts) with visible opposing instrumented players were identified. When at least one player had a recorded impact, players who were struck tended to have higher rotational acceleration than players in striking positions. When both players had a recorded impact, lighter players and taller players experienced higher mean head accelerations compared with heavier players and shorter players. Understanding the factors influencing HIE during contact events in football may help inform methods to reduce head injury risk.


Asunto(s)
Traumatismos Craneocerebrales , Fútbol Americano , Aceleración , Adolescente , Atletas , Fenómenos Biomecánicos , Traumatismos Craneocerebrales/epidemiología , Traumatismos Craneocerebrales/prevención & control , Humanos
12.
Res Sports Med ; 28(1): 55-71, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30880469

RESUMEN

While many research efforts have focused on head impact exposure in professional soccer, there have been few studies characterizing exposure at the youth level. The aim of this study is to evaluate a new instrumentation approach and collect some of the first head impact exposure data for youth female soccer players. Athletes were instrumented with custom-fit mouthpieces that measure head impacts. Detailed video analysis was conducted to identify characteristics describing impact source (e.g., kick, header, throw). A total of 763 verified head impacts were collected over 23 practices and 8 games from 7 athletes. The median peak linear accelerations, rotational velocities, and rotational accelerations of all impacts were 9.4 g, 4.1 rad/s, and 689 rad/s2, respectively. Pairwise comparisons resulted in statistically significant differences in kinematics by impact source. Headers following a kicked ball had the highest accelerations and velocity when compared to headers from thrown or another header.


Asunto(s)
Traumatismos en Atletas/fisiopatología , Traumatismos Cerrados de la Cabeza/fisiopatología , Protectores Bucales , Fútbol/lesiones , Adolescente , Fenómenos Biomecánicos , Niño , Femenino , Humanos
13.
J Biomech Eng ; 140(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29383374

RESUMEN

Head impact exposure in popular contact sports is not well understood, especially in the youth population, despite recent advances in impact-sensing technology which has allowed widespread collection of real-time head impact data. Previous studies indicate that a custom-instrumented mouthpiece is a superior method for collecting accurate head acceleration data. The objective of this study was to evaluate the efficacy of mounting a sensor device inside an acrylic retainer form factor to measure six-degrees-of-freedom (6DOF) head kinematic response. This study compares 6DOF mouthpiece kinematics at the head center of gravity (CG) to kinematics measured by an anthropomorphic test device (ATD). This study found that when instrumentation is mounted in the rigid retainer form factor, there is good coupling with the upper dentition and highly accurate kinematic results compared to the ATD. Peak head kinematics were correlated with r2 > 0.98 for both rotational velocity and linear acceleration and r2 = 0.93 for rotational acceleration. These results indicate that a rigid retainer-based form factor is an accurate and promising method of collecting head impact data. This device can be used to study head impacts in helmeted contact sports such as football, hockey, and lacrosse as well as nonhelmeted sports such as soccer and basketball. Understanding the magnitude and frequency of impacts sustained in various sports using an accurate head impact sensor, such as the one presented in this study, will improve our understanding of head impact exposure and sports-related concussion.


Asunto(s)
Cabeza , Ensayo de Materiales/instrumentación , Fenómenos Mecánicos , Fenómenos Biomecánicos , Humanos
14.
J Appl Biomech ; 34(5): 354-360, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29651910

RESUMEN

This study aimed to compare head impact exposures between practices and games in football players ages 9 to 14 years, who account for approximately 70% of all football players in the United States. Over a period of 2 seasons, 136 players were enrolled from 3 youth programs, and 49,847 head impacts were recorded from 345 practices and 137 games. During the study, individual players sustained a median of 211 impacts per season, with a maximum of 1226 impacts. Players sustained 50th (95th) percentile peak linear acceleration of 18.3 (46.9) g, peak rotational acceleration of 1305.4 (3316.6) rad·s-2, and Head Impact Technology Severity Profile of 13.7 (24.3), respectively. Overall, players with a higher frequency of head impacts at practices recorded a higher frequency of head impacts at games (P < .001, r2 = .52), and players who sustained a greater average magnitude of head impacts during practice also recorded a greater average magnitude of head impacts during games (P < .001). The youth football head impact data quantified in this study provide valuable insight into the player exposure profile, which should serve as a key baseline in efforts to reduce injury.


Asunto(s)
Traumatismos Craneocerebrales/prevención & control , Fútbol Americano/lesiones , Dispositivos de Protección de la Cabeza , Aceleración , Adolescente , Fenómenos Biomecánicos , Niño , Traumatismos Craneocerebrales/fisiopatología , Movimientos de la Cabeza/fisiología , Humanos , Masculino , Estados Unidos
15.
Radiology ; 281(3): 919-926, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27775478

RESUMEN

Purpose To examine the effects of subconcussive impacts resulting from a single season of youth (age range, 8-13 years) football on changes in specific white matter (WM) tracts as detected with diffusion-tensor imaging in the absence of clinically diagnosed concussions. Materials and Methods Head impact data were recorded by using the Head Impact Telemetry system and quantified as the combined-probability risk-weighted cumulative exposure (RWECP). Twenty-five male participants were evaluated for seasonal fractional anisotropy (FA) changes in specific WM tracts: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus, and superior longitudinal fasciculus (SLF). Fiber tracts were segmented into a central core and two fiber terminals. The relationship between seasonal FA change in the whole fiber, central core, and the fiber terminals with RWECP was also investigated. Linear regression analysis was conducted to determine the association between RWECP and change in fiber tract FA during the season. Results There were statistically significant linear relationships between RWEcp and decreased FA in the whole (R2 = 0.433; P = .003), core (R2 = 0.3649; P = .007), and terminals (R2 = 0.5666; P < .001) of left IFOF. A trend toward statistical significance (P = .08) in right SLF was observed. A statistically significant correlation between decrease in FA of the right SLF terminal and RWECP was also observed (R2 = 0.2893; P = .028). Conclusion This study found a statistically significant relationship between head impact exposure and change of FA fractional anisotropy value of whole, core, and terminals of left IFOF and right SLF's terminals where WM and gray matter intersect, in the absence of a clinically diagnosed concussion. © RSNA, 2016.


Asunto(s)
Conmoción Encefálica/patología , Fútbol Americano/lesiones , Traumatismos Cerrados de la Cabeza/patología , Sustancia Blanca/patología , Adolescente , Niño , Imagen de Difusión Tensora , Lóbulo Frontal/patología , Humanos , Masculino , Fibras Nerviosas Mielínicas/patología , Vías Nerviosas/patología , Lóbulo Occipital/patología
16.
J Anat ; 229(6): 838-846, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-25406956

RESUMEN

The morphology of the brain and skull are important in the evaluation of the aging human; however, little is known about how the skull may change with age. The objective of this study was to evaluate the morphological changes of the adult skull using three-dimensional geometric morphometric analysis of thousands of landmarks with the focus on anatomic regions that may be correlated with brain atrophy and head injury. Computed tomography data were collected between ages 20 and 100. Each scan was segmented using thresholding techniques. An atlas image of a 50th percentile skull was registered to each subject scan by computing a series of rigid, affine, and non-linear transformations between atlas space and subject space. Landmarks on the atlas skull were transformed to each subject and partitioned into the inner and outer cranial vault and the cranial fossae. A generalized Procrustes analysis was completed for the landmark sets. The coordinate locations describing the shape of each region were regressed with age to generate a model predicting the landmark location with age. Permutation testing was performed to assess significant changes with age. For the males, all anatomic regions reveal significant changes in shape with age except for the posterior cranial fossa. For the females, only the middle cranial fossa and anterior cranial fossa were found to change significantly in shape. Results of this study are important for understanding the adult skull and how shape changes may pertain to brain atrophy, aging, and injury.


Asunto(s)
Envejecimiento/patología , Caracteres Sexuales , Cráneo/anatomía & histología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Distribución Aleatoria , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
17.
J Anat ; 226(1): 73-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25441171

RESUMEN

Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies.


Asunto(s)
Algoritmos , Lesiones Encefálicas/fisiopatología , Cráneo/anatomía & histología , Tomografía Computarizada por Rayos X/métodos , Cadáver , Humanos , Masculino , Microtomografía por Rayos X
18.
Accid Anal Prev ; 192: 107254, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37557000

RESUMEN

Grassroots dirt track racing is a foundational part of motorsports with a high risk of severe injury. This study aimed to gather perspectives and experiences of motorsports drivers surrounding safety and head acceleration events experienced during grassroots dirt track racing to inform strategies to improve driver safety. Thirteen drivers (n=9 who primarily race on dirt tracks; n=4 who primarily race on pavement tracks) with prior dirt track racing experience participated in separate, group-specific focus groups and/or one-on-one interviews where video, simulations of head motion, and head acceleration data were shared. Peak kinematics of laps and crash contact scenarios were recorded, and head perturbations (i.e., deviations in head motion relative to its moving-average trajectory) were quantified for each lap and presented through guided discussion. Responses were summarized using Rapid Assessment Process. Audio recordings and field notes were collected from focus groups and interviews and analyzed across 25 domains. Drivers described dirt track racing as short, fast bursts of racing. Benefits of dirt track racing for driver development were described, including learning car control. Drivers acknowledged risks of racing and expressed confidence in safety equipment but identified areas for improvement. Drivers observed lateral bouncing of the head in video and simulations but recognized that such motions were not noticed while racing. Track conditions and track type were identified as factors influencing head perturbations. Mean PLA (5.5 g) and PRV (3.07 rad/s) of perturbations experienced during racing laps and perturbation frequencies of 5 and 7 perturbations per second were reported. Generally, drivers accurately estimated the head acceleration magnitudes but were surprised by the frequency and maximum magnitude of perturbations. Maximum perturbation magnitudes (26.8 g and 19.0 rad/s) were attributed to hitting a "rut" in the dirt. Drivers described sudden stops, vertical loads due to landing from a large height, and impacts to the vehicle frame as crash events they physically feel the most. Summary statistics for crashes (medians = 7.30 g, 6.94 rad/s) were reported. Typical impact magnitudes measured in other sports (e.g., football) were provided for context. Upon reviewing the biomechanics, drivers were surprised that crash accelerations were relatively low compared to other contact/collision sports. Pavement drivers noted limited safety features in dirt track racing compared to pavement, including rigidity of vehicle frames, seat structure, seatbelt integration, and lack of oversight from sanctioning bodies. Most drivers felt seat inserts and head and neck restraints are important for injury prevention; however, usage of seat inserts and preferred head and neck restraint system differed among drivers. Drivers described their perspectives and experiences related to safety and identified strategies to improve safety in grassroots dirt track racing. Drivers expressed support for future safety research.


Asunto(s)
Accidentes de Tránsito , Deportes , Humanos , Accidentes de Tránsito/prevención & control , Fenómenos Biomecánicos , Cinturones de Seguridad , Equipos de Seguridad
19.
Ann Biomed Eng ; 51(1): 88-102, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36094763

RESUMEN

The current study aims to examine the effect of material properties on implanted leads used for deep brain stimulation (DBS) using finite element (FE) analysis to investigate brain deformation around an implanted DBS lead in response to daily head accelerations. FE analysis was used to characterize the relative motion of the DBS lead in a suite of fifteen cases sampled from a previously derived kinematic envelope representative of everyday activities describing translational and rotational pulse shape, magnitude, and duration. Load curves were applied to the atlas-based brain model (ABM) with a scaled Haversine acceleration pulse in four directions of rotation: + X, - Y, + Y, and + Z. In addition to the fifteen sampled cases, six experimental cases taken from a previous literature review were also simulated for comparison. The current investigation found that there was very little difference in brain response for the DBS leads with two different material properties. In general, the brain and DBS lead experienced the greatest deformation during rotation about the Z axis for similar load cases. In conclusion, this study showed that there was no significant difference in implanted DBS lead deformation based on lead material properties.


Asunto(s)
Estimulación Encefálica Profunda , Electrodos Implantados , Encéfalo , Rotación , Análisis de Elementos Finitos
20.
Accid Anal Prev ; 191: 107184, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37421803

RESUMEN

Motorsport athletes experience head acceleration loading during crashes; however, there is limited literature quantifying the frequency and magnitude of these loads, particularly at the grassroots level of the sport. Understanding head motion experienced during crash events in motorsport is necessary to inform interventions to improve driver safety. This study aimed to quantify and characterize driver head and vehicle kinematics during crashes in open-wheel grassroots dirt track racing. Seven drivers (ages 16-22, n = 2 female) competing in a national midget car series were enrolled in this study over two racing seasons and were instrumented with custom mouthpiece sensors. Drivers' vehicles were outfitted with an incident data recorder (IDR) to measure vehicle acceleration. Forty-one crash events were verified and segmented into 139 individual contact scenarios via film review. Peak resultant linear acceleration (PLA) of the vehicle and PLA, peak rotational acceleration (PRA), and peak rotational velocity (PRV) of the head were quantified and compared across the part of the vehicle contacted (i.e., tires or chassis), the vehicle location contacted (e.g., front, left, bottom), the external object contacted (i.e., another vehicle, wall, or the track), and the principal direction of force (PDOF). The median (95th percentile) PLA, PRA, and PRV of the head and PLA of the vehicle were 12.3 (37.3) g, 626 (1799) rad/s2, 8.92 (18.6) rad/s, and 23.2 (88.1) g, respectively. Contacts with a non-horizontal PDOF (n = 98, 71%) and contact with the track (n = 96, 70%) were common in the data set. Contact to the left side of the vehicle, with the track, and with a non-horizontal PDOF tended to have the greatest head kinematics compared to other factors in each sub-analysis. Results from this pilot study can inform larger studies of head acceleration exposure during crashes in the grassroots motorsports environment and may ultimately support evidence-based driver safety interventions.


Asunto(s)
Accidentes de Tránsito , Deportes , Femenino , Humanos , Aceleración , Fenómenos Biomecánicos , Proyectos Piloto , Poliésteres , Masculino , Adolescente , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA