Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 213(3): 339-346, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912839

RESUMEN

T cells producing IFN-γ have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies that achieved protection by adoptively transferred Mtb-specific IFN-γ-/- T cells. Using IFN-γ-/- T cell chimeric mice and adoptive transfer of IFN-γ-/- T cells into TCRß-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFN-γ, and, furthermore, mice selectively deficient in T cell-derived IFN-γ develop exacerbated disease compared with T cell-deficient control animals, despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFN-γ skews infected and bystander monocyte-derived macrophages to an alternative M2 phenotype and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFN-γ in pulmonary immunity against tuberculosis.


Asunto(s)
Interferón gamma , Pulmón , Ratones Noqueados , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Animales , Ratones , Traslado Adoptivo , Interferón gamma/inmunología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Neutrófilos/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología
3.
Diagn Microbiol Infect Dis ; 108(1): 116106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931386

RESUMEN

Efforts are underway globally to develop effective vaccines and drugs against M. tuberculosis (Mtb) to reduce the morbidity and mortality of tuberculosis. Improving detection of slow-growing mycobacteria could simplify and accelerate efficacy studies of vaccines and drugs in animal models and human clinical trials. Here, a real-time reverse transcription PCR (RT-PCR) assay was developed to detect pre-ribosomal RNA (pre-rRNA) of Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mtb. This pre-rRNA biomarker is indicative of bacterial viability. In two different mouse models, the presence of pre-rRNA from BCG and Mtb in ex vivo tissues showed excellent agreement with slower culture-based colony-forming unit assays. The addition of a brief nutritional stimulation prior to molecular viability testing further differentiated viable but dormant mycobacteria from dead mycobacteria. This research has set the stage to evaluate pre-rRNA as a BCG and/or Mtb infection biomarker in future drug and vaccine clinical studies.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Vacuna BCG , Precursores del ARN , Tuberculosis/diagnóstico , Tuberculosis/prevención & control , Desarrollo de Vacunas , Biomarcadores
4.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659794

RESUMEN

Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.

5.
Front Immunol ; 15: 1427846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007152

RESUMEN

To investigate how host and pathogen diversity govern immunity against Mycobacterium tuberculosis (Mtb), we performed a large-scale screen of vaccine-mediated protection against aerosol Mtb infection using three inbred mouse strains [C57BL/6 (B6), C3HeB/FeJ (C3H), Balb/c x 129/SvJ (C129F1)] and three Mtb strains (H37Rv, CDC1551, SA161) representing two lineages and distinct virulence properties. We compared three protective modalities, all of which involve inoculation with live mycobacteria: Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, delivered either subcutaneously or intravenously, and concomitant Mtb infection (CoMtb), a model of pre-existing immunity in which a low-level Mtb infection is established in the cervical lymph node following intradermal inoculation. We examined lung bacterial burdens at early (Day 28) and late (Day 98) time points after aerosol Mtb challenge and histopathology at Day 98. We observed substantial heterogeneity in the reduction of bacterial load afforded by these modalities at Day 28 across the combinations and noted a strong positive correlation between bacterial burden in unvaccinated mice and the degree of protection afforded by vaccination. Although we observed variation in the degree of reduction in bacterial burdens across the nine mouse/bacterium strain combinations, virtually all protective modalities performed similarly for a given strain-strain combination. We also noted dramatic variation in histopathology changes driven by both host and bacterial genetic backgrounds. Vaccination improved pathology scores for all infections except CDC1551. However, the most dramatic impact of vaccination on lesion development occurred for the C3H-SA161 combination, where vaccination entirely abrogated the development of the large necrotic lesions that arise in unvaccinated mice. In conclusion, we find that substantial TB heterogeneity can be recapitulated by introducing variability in both host and bacterial genetics, resulting in changes in vaccine-mediated protection as measured both by bacterial burden as well as histopathology. These differences can be harnessed in future studies to identify immune correlates of vaccine efficacy.


Asunto(s)
Mycobacterium tuberculosis , Animales , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/genética , Ratones , Variación Genética , Femenino , Tuberculosis/prevención & control , Tuberculosis/inmunología , Tuberculosis/microbiología , Vacunas contra la Tuberculosis/inmunología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Interacciones Huésped-Patógeno/inmunología , Vacuna BCG/inmunología , Pulmón/microbiología , Pulmón/patología , Pulmón/inmunología , Modelos Animales de Enfermedad , Carga Bacteriana , Vacunación
6.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528148

RESUMEN

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Macrófagos Alveolares/microbiología , Tuberculosis/microbiología , Mycobacterium tuberculosis/fisiología , Macrófagos/microbiología , Lípidos , Péptidos y Proteínas de Señalización Intracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA