Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Comput Assist Tomogr ; 48(4): 510-520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38518197

RESUMEN

ABSTRACT: Neuroendocrine neoplasms (NENs) may be challenging to diagnose due to their small size and diverse anatomical locations. Hybrid imaging techniques, specifically positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI), represent the current state-of-the-art for evaluating NENs. The preferred radiopharmaceuticals for NEN PET imaging are gallium-68 (68Ga) DOTA-peptides, which target somatostatin receptors (SSTR) overexpressed on NEN cells. Clinical applications of [68Ga]Ga-DOTA-peptides PET/CT include diagnosis, staging, prognosis assessment, treatment selection, and response evaluation. Fluorodeoxyglucose-18 (18F-FDG) PET/CT aids in detecting low-SSTR-expressing lesions and helps in patient stratification and treatment planning, particularly in grade 3 neuroendocrine tumors (NETs). New radiopharmaceuticals such as fluorine-labeled SSTR agonists and SSTR antagonists are emerging as alternatives to 68Ga-labeled peptides, offering improved detection rates and favorable biodistribution. The maturing of PET/MRI brings advantages to NEN imaging, including simultaneous acquisition of PET and MRI images, superior soft tissue contrast resolution, and motion correction capabilities. The PET/MRI with [68Ga]Ga-DOTA-peptides has demonstrated higher lesion detection rates and more accurate lesion classification compared to PET/CT. Overall, hybrid imaging offers valuable insights in the diagnosis, staging, and treatment planning of NENs. Further research is needed to refine response assessment criteria and standardize reporting guidelines.


Asunto(s)
Tumores Neuroendocrinos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Tumores Neuroendocrinos/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Imagen Multimodal/métodos , Imagen por Resonancia Magnética/métodos
2.
J Comput Assist Tomogr ; 48(4): 601-613, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38438338

RESUMEN

ABSTRACT: Recent advances in molecular pathology and an improved understanding of the etiology of neuroendocrine neoplasms (NENs) have given rise to an updated World Health Organization classification. Since gastroenteropancreatic NENs (GEP-NENs) are the most common forms of NENs and their incidence has been increasing constantly, they will be the focus of our attention. Here, we review the findings at the foundation of the new classification system, discuss how it impacts imaging research and radiological practice, and illustrate typical and atypical imaging and pathological findings. Gastroenteropancreatic NENs have a highly variable clinical course, which existing classification schemes based on proliferation rate were unable to fully capture. While well- and poorly differentiated NENs both express neuroendocrine markers, they are fundamentally different diseases, which may show similar proliferation rates. Genetic alterations specific to well-differentiated neuroendocrine tumors graded 1 to 3 and poorly differentiated neuroendocrine cancers of small cell and large-cell subtype have been identified. The new tumor classification places new demands and creates opportunities for radiologists to continue providing the clinically most relevant report and on researchers to design projects, which continue to be clinically applicable.


Asunto(s)
Tumores Neuroendocrinos , Organización Mundial de la Salud , Humanos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/clasificación , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/patología
3.
J Comput Assist Tomogr ; 48(4): 521-532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38657156

RESUMEN

ABSTRACT: Neuroendocrine neoplasms are a heterogeneous group of gastrointestinal and lung tumors. Their diverse clinical manifestations, variable locations, and heterogeneity present notable diagnostic challenges. This article delves into the imaging modalities vital for their detection and characterization. Computed tomography is essential for initial assessment and staging. At the same time, magnetic resonance imaging (MRI) is particularly adept for liver, pancreatic, osseous, and rectal imaging, offering superior soft tissue contrast. The article also highlights the limitations of these imaging techniques, such as MRI's inability to effectively evaluate the cortical bone and the questioned cost-effectiveness of computed tomography and MRI for detecting specific gastric lesions. By emphasizing the strengths and weaknesses of these imaging techniques, the review offers insights into optimizing their utilization for improved diagnosis, staging, and therapeutic management of neuroendocrine neoplasms.


Asunto(s)
Imagen por Resonancia Magnética , Tumores Neuroendocrinos , Tomografía Computarizada por Rayos X , Humanos , Tumores Neuroendocrinos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos
4.
J Comput Assist Tomogr ; 48(4): 614-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626756

RESUMEN

ABSTRACT: Neuroendocrine neoplasms (NENs) are rare neoplasms originating from neuroendocrine cells, with increasing incidence due to enhanced detection methods. These tumors display considerable heterogeneity, necessitating diverse management strategies based on factors like organ of origin and tumor size. This article provides a comprehensive overview of therapeutic approaches for NENs, emphasizing the role of imaging in treatment decisions. It categorizes tumors based on their locations: gastric, duodenal, pancreatic, small bowel, colonic, rectal, appendiceal, gallbladder, prostate, lung, gynecological, and others. The piece also elucidates the challenges in managing metastatic disease and controversies surrounding MEN1-neuroendocrine tumor management. The article underscores the significance of individualized treatment plans, underscoring the need for a multidisciplinary approach to ensure optimal patient outcomes.


Asunto(s)
Tumores Neuroendocrinos , Humanos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/patología
5.
J Comput Assist Tomogr ; 48(4): 628-639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626751

RESUMEN

ABSTRACT: Neuroendocrine neoplasms (NENs) are a diverse group of tumors that express neuroendocrine markers and primarily affect the lungs and digestive system. The incidence of NENs has increased over time due to advancements in imaging and diagnostic techniques. Effective management of NENs requires a multidisciplinary approach, considering factors such as tumor location, grade, stage, symptoms, and imaging findings. Treatment strategies vary depending on the specific subtype of NEN. In this review, we will focus on treatment strategies and therapies including the information relevant to clinicians in order to undertake optimal management and treatment decisions, the implications of different therapies on imaging, and how to ascertain their possible complications and treatment effects.


Asunto(s)
Tumores Neuroendocrinos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/terapia , Humanos , Diagnóstico por Imagen/métodos , Derivación y Consulta
6.
Proc Natl Acad Sci U S A ; 117(4): 2092-2098, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31964840

RESUMEN

Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2-), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2- invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Imagen por Resonancia Magnética/instrumentación , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Simportadores/genética , Simportadores/metabolismo
7.
Br J Cancer ; 127(6): 1051-1060, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35739300

RESUMEN

BACKGROUND: Surgery for renal cell carcinoma (RCC) with venous tumour thrombus (VTT) extension into the renal vein (RV) and/or inferior vena cava (IVC) has high peri-surgical morbidity/mortality. NAXIVA assessed the response of VTT to axitinib, a potent tyrosine kinase inhibitor. METHODS: NAXIVA was a single-arm, multi-centre, Phase 2 study. In total, 20 patients with resectable clear cell RCC and VTT received upto 8 weeks of pre-surgical axitinib. The primary endpoint was percentage of evaluable patients with VTT improvement by Mayo level on MRI. Secondary endpoints were percentage change in surgical approach and VTT length, response rate (RECISTv1.1) and surgical morbidity. RESULTS: In all, 35% (7/20) patients with VTT had a reduction in Mayo level with axitinib: 37.5% (6/16) with IVC VTT and 25% (1/4) with RV-only VTT. No patients had an increase in Mayo level. In total, 75% (15/20) of patients had a reduction in VTT length. Overall, 41.2% (7/17) of patients who underwent surgery had less invasive surgery than originally planned. Non-responders exhibited lower baseline microvessel density (CD31), higher Ki67 and exhausted or regulatory T-cell phenotype. CONCLUSIONS: NAXIVA provides the first Level II evidence that axitinib downstages VTT in a significant proportion of patients leading to reduction in the extent of surgery. CLINICAL TRIAL REGISTRATION: NCT03494816.


Asunto(s)
Axitinib , Carcinoma de Células Renales , Neoplasias Renales , Trombosis , Axitinib/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/cirugía , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/cirugía , Terapia Neoadyuvante , Nefrectomía , Estudios Retrospectivos , Trombosis/prevención & control
8.
BJU Int ; 130(2): 244-253, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34549873

RESUMEN

OBJECTIVE: To explore translational biological and imaging biomarkers for sunitinib treatment before and after debulking nephrectomy in the NeoSun (European Union Drug Regulating Authorities Clinical Trials Database [EudraCT] number: 2005-004502-82) single-centre, single-arm, single-agent, Phase II trial. PATIENTS AND METHODS: Treatment-naïve patients with metastatic renal cell carcinoma (mRCC) received 50 mg once daily sunitinib for 12 days pre-surgically, then post-surgery on 4 week-on, 2 week-off, repeating 6-week cycles until disease progression in a single arm phase II trial. Structural and dynamic contrast-enhanced magnet resonance imaging (DCE-MRI) and research blood sampling were performed at baseline and after 12 days. Computed tomography imaging was performed at baseline and post-surgery then every two cycles. The primary endpoint was objective response rate (Response Evaluation Criteria In Solid Tumors [RECIST]) excluding the resected kidney. Secondary endpoints included changes in DCE-MRI of the tumour following pre-surgery sunitinib, overall survival (OS), progression-free survival (PFS), response duration, surgical morbidity/mortality, and toxicity. Translational and imaging endpoints were exploratory. RESULTS: A total of 14 patients received pre-surgery sunitinib, 71% (10/14) took the planned 12 doses. All underwent nephrectomy, and 13 recommenced sunitinib postoperatively. In all, 58.3% (seven of 12) of patients achieved partial or complete response (PR or CR) (95% confidence interval 27.7-84.8%). The median OS was 33.7 months and median PFS was 15.7 months. Amongst those achieving a PR or CR, the median response duration was 8.7 months. No unexpected surgical complications, sunitinib-related toxicities, or surgical delays occurred. Within the translational endpoints, pre-surgical sunitinib significantly increased necrosis, and reduced cluster of differentiation-31 (CD31), Ki67, circulating vascular endothelial growth factor-C (VEGF-C), and transfer constant (KTrans , measured using DCE-MRI; all P < 0.05). There was a trend for improved OS in patients with high baseline plasma VEGF-C expression (P = 0.02). Reduction in radiological tumour volume after pre-surgical sunitinib correlated with high percentage of solid tumour components at baseline (Spearman's coefficient ρ = 0.69, P = 0.02). Conversely, the percentage tumour volume reduction correlated with lower baseline percentage necrosis (coefficient = -0.51, P = 0.03). CONCLUSION: Neoadjuvant studies such as the NeoSun can safely and effectively explore translational biological and imaging endpoints.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Neoplasias Renales , Antineoplásicos/uso terapéutico , Biomarcadores , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/cirugía , Humanos , Indoles/uso terapéutico , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/cirugía , Necrosis/tratamiento farmacológico , Pirroles/uso terapéutico , Sunitinib/uso terapéutico , Factor C de Crecimiento Endotelial Vascular/uso terapéutico
9.
BMC Cancer ; 21(1): 1238, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794412

RESUMEN

BACKGROUND: Window-of-opportunity trials, evaluating the engagement of drugs with their biological target in the time period between diagnosis and standard-of-care treatment, can help prioritise promising new systemic treatments for later-phase clinical trials. Renal cell carcinoma (RCC), the 7th commonest solid cancer in the UK, exhibits targets for multiple new systemic anti-cancer agents including DNA damage response inhibitors, agents targeting vascular pathways and immune checkpoint inhibitors. Here we present the trial protocol for the WIndow-of-opportunity clinical trial platform for evaluation of novel treatment strategies in REnal cell cancer (WIRE). METHODS: WIRE is a Phase II, multi-arm, multi-centre, non-randomised, proof-of-mechanism (single and combination investigational medicinal product [IMP]), platform trial using a Bayesian adaptive design. The Bayesian adaptive design leverages outcome information from initial participants during pre-specified interim analyses to determine and minimise the number of participants required to demonstrate efficacy or futility. Patients with biopsy-proven, surgically resectable, cT1b+, cN0-1, cM0-1 clear cell RCC and no contraindications to the IMPs are eligible to participate. Participants undergo diagnostic staging CT and renal mass biopsy followed by treatment in one of the treatment arms for at least 14 days. Initially, the trial includes five treatment arms with cediranib, cediranib + olaparib, olaparib, durvalumab and durvalumab + olaparib. Participants undergo a multiparametric MRI before and after treatment. Vascularised and de-vascularised tissue is collected at surgery. A ≥ 30% increase in CD8+ T-cells on immunohistochemistry between the screening and nephrectomy is the primary endpoint for durvalumab-containing arms. Meanwhile, a reduction in tumour vascular permeability measured by Ktrans on dynamic contrast-enhanced MRI by ≥30% is the primary endpoint for other arms. Secondary outcomes include adverse events and tumour size change. Exploratory outcomes include biomarkers of drug mechanism and treatment effects in blood, urine, tissue and imaging. DISCUSSION: WIRE is the first trial using a window-of-opportunity design to demonstrate pharmacological activity of novel single and combination treatments in RCC in the pre-surgical space. It will provide rationale for prioritising promising treatments for later phase trials and support the development of new biomarkers of treatment effect with its extensive translational agenda. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03741426 / EudraCT: 2018-003056-21 .


Asunto(s)
Antineoplásicos/uso terapéutico , Teorema de Bayes , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Permeabilidad Capilar/efectos de los fármacos , Carcinoma de Células Renales/irrigación sanguínea , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Humanos , Riñón/patología , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Linfocitos Infiltrantes de Tumor , Imagen por Resonancia Magnética , Inutilidad Médica , Nefrectomía , Ensayos Clínicos Controlados no Aleatorios como Asunto , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Prueba de Estudio Conceptual , Quinazolinas/uso terapéutico , Resultado del Tratamiento , Carga Tumoral
10.
Eur Radiol ; 31(9): 6962-6973, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33725187

RESUMEN

OBJECTIVE: To determine the accuracy of interpretation of a non-contrast MRI protocol in characterizing adnexal masses. METHODS AND MATERIALS: Two hundred ninety-one patients (350 adnexal masses) who underwent gynecological MRI at our institution between the 1st of January 2008 and the 31st of December 2018 were reviewed. A random subset (102 patients with 121 masses) was chosen to evaluate the reproducibility and repeatability of readers' assessments. Readers evaluated non-contrast MRI scans retrospectively, assigned a 5-point score for the risk of malignancy and gave a specific diagnosis. The reference standard for the diagnosis was histopathology or at least one-year imaging follow-up. Diagnostic accuracy of the non-contrast MRI score was calculated. Inter- and intra-reader agreement was analyzed with Cohen's kappa statistics. RESULTS: There were 53/350 (15.1%) malignant lesions in the whole cohort and 20/121 (16.5%) malignant lesions in the random subset. Good agreement between readers was found for the non-contrast MRI score (к = 0.73, 95% confidence interval [CI] 0.58-0.86) whilst the intra-reader agreement was excellent (к = 0.81, 95% CI 0.70-0.88). The non-contrast MRI score value of ≥ 4 was associated with malignancy with a sensitivity of 84.9%, a specificity of 95.9%, an accuracy of 94.2% and a positive likelihood ratio of 21 (area under the receiver operating curve 0.93, 95% CI 0.90-0.96). CONCLUSION: Adnexal mass characterization on MRI without the administration of contrast medium has a high accuracy and excellent inter- and intra-reader agreement. Our results suggest that non-contrast studies may offer a reasonable diagnostic alternative when the administration of intravenous contrast medium is not possible. KEY POINTS: • A non-contrast pelvic MRI protocol may allow the characterization of adnexal masses with high accuracy. • The non-contrast MRI score may be used in clinical practice for differentiating benign from malignant adnexal lesions when the lack of intravenous contrast medium precludes analysis with the O-RADS MRI score.


Asunto(s)
Enfermedades de los Anexos , Neoplasias Ováricas , Enfermedades de los Anexos/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Neoplasias Ováricas/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
11.
Eur Radiol ; 31(6): 3765-3772, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33315123

RESUMEN

PURPOSE: To develop a precision tissue sampling technique that uses computed tomography (CT)-based radiomic tumour habitats for ultrasound (US)-guided targeted biopsies that can be integrated in the clinical workflow of patients with high-grade serous ovarian cancer (HGSOC). METHODS: Six patients with suspected HGSOC scheduled for US-guided biopsy before starting neoadjuvant chemotherapy were included in this prospective study from September 2019 to February 2020. The tumour segmentation was performed manually on the pre-biopsy contrast-enhanced CT scan. Spatial radiomic maps were used to identify tumour areas with similar or distinct radiomic patterns, and tumour habitats were identified using the Gaussian mixture modelling. CT images with superimposed habitat maps were co-registered with US images by means of a landmark-based rigid registration method for US-guided targeted biopsies. The dice similarity coefficient (DSC) was used to assess the tumour-specific CT/US fusion accuracy. RESULTS: We successfully co-registered CT-based radiomic tumour habitats with US images in all patients. The median time between CT scan and biopsy was 21 days (range 7-30 days). The median DSC for tumour-specific CT/US fusion accuracy was 0.53 (range 0.79 to 0.37). The CT/US fusion accuracy was high for the larger pelvic tumours (DSC: 0.76-0.79) while it was lower for the smaller omental metastases (DSC: 0.37-0.53). CONCLUSION: We developed a precision tissue sampling technique that uses radiomic habitats to guide in vivo biopsies using CT/US fusion and that can be seamlessly integrated in the clinical routine for patients with HGSOC. KEY POINTS: • We developed a prevision tissue sampling technique that co-registers CT-based radiomics-based tumour habitats with US images. • The CT/US fusion accuracy was high for the larger pelvic tumours (DSC: 0.76-0.79) while it was lower for the smaller omental metastases (DSC: 0.37-0.53).


Asunto(s)
Neoplasias Ováricas , Tomografía Computarizada por Rayos X , Ecosistema , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Estudios Prospectivos , Ultrasonografía Intervencional
12.
Eur Radiol ; 30(6): 3558-3566, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32060715

RESUMEN

OBJECTIVES: (1) To assess the methodological quality of radiomics studies investigating histological subtypes, therapy response, and survival in patients with renal cell carcinoma (RCC) and (2) to determine the risk of bias in these radiomics studies. METHODS: In this systematic review, literature published since 2000 on radiomics in RCC was included and assessed for methodological quality using the Radiomics Quality Score. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool and a meta-analysis of radiomics studies focusing on differentiating between angiomyolipoma without visible fat and RCC was performed. RESULTS: Fifty-seven studies investigating the use of radiomics in renal cancer were identified, including 4590 patients in total. The average Radiomics Quality Score was 3.41 (9.4% of total) with good inter-rater agreement (ICC 0.96, 95% CI 0.93-0.98). Three studies validated results with an independent dataset, one used a publically available validation dataset. None of the studies shared the code, images, or regions of interest. The meta-analysis showed moderate heterogeneity among the included studies and an odds ratio of 6.24 (95% CI 4.27-9.12; p < 0.001) for the differentiation of angiomyolipoma without visible fat from RCC. CONCLUSIONS: Radiomics algorithms show promise for answering clinical questions where subjective interpretation is challenging or not established. However, the generalizability of findings to prospective cohorts needs to be demonstrated in future trials for progression towards clinical translation. Improved sharing of methods including code and images could facilitate independent validation of radiomics signatures. KEY POINTS: • Studies achieved an average Radiomics Quality Score of 10.8%. Common reasons for low Radiomics Quality Scores were unvalidated results, retrospective study design, absence of open science, and insufficient control for multiple comparisons. • A previous training phase allowed reaching almost perfect inter-rater agreement in the application of the Radiomics Quality Score. • Meta-analysis of radiomics studies distinguishing angiomyolipoma without visible fat from renal cell carcinoma show moderate diagnostic odds ratios of 6.24 and moderate methodological diversity.


Asunto(s)
Angiomiolipoma/diagnóstico por imagen , Carcinoma de Células Renales/diagnóstico por imagen , Informática , Neoplasias Renales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Angiomiolipoma/patología , Carcinoma de Células Renales/patología , Diagnóstico Diferencial , Humanos , Neoplasias Renales/patología
13.
MAGMA ; 33(1): 23-32, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31782036

RESUMEN

Magnetic resonance imaging (MRI) is a well-established modality for assessing renal morphology and function, as well as changes that occur during disease. However, the significant metabolic changes associated with renal disease are more challenging to assess with MRI. Hyperpolarized carbon-13 MRI is an emerging technique which provides an opportunity to probe metabolic alterations at high sensitivity by providing an increase in the signal-to-noise ratio of 20,000-fold or more. This review will highlight the current status of hyperpolarised 13C-MRI and its translation into the clinic and how it compares to metabolic measurements provided by competing technologies such as positron emission tomography (PET).


Asunto(s)
Isótopos de Carbono , Enfermedades Renales/diagnóstico por imagen , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Animales , Biomarcadores/metabolismo , Glucólisis , Humanos , Hipoxia , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/metabolismo , Oxidación-Reducción
14.
Invest Radiol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043213

RESUMEN

OBJECTIVE: Deep learning (DL)-enabled magnetic resonance imaging (MRI) reconstructions can enable shortening of breath-hold examinations and improve image quality by reducing motion artifacts. Prospective studies with DL reconstructions of accelerated MRI of the upper abdomen in the context of pancreatic pathologies are lacking. In a clinical setting, the purpose of this study is to investigate the performance of a novel DL-based reconstruction algorithm in T1-weighted volumetric interpolated breath-hold examinations with partial Fourier sampling and Dixon fat suppression (hereafter, VIBE-DixonDL). The objective is to analyze its impact on acquisition time, image sharpness and quality, diagnostic confidence, pancreatic lesion conspicuity, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). METHODS: This prospective single-center study included participants with various pancreatic pathologies who gave written consent from January 2023 to September 2023. During the same session, each participant underwent 2 MRI acquisitions using a 1.5 T scanner: conventional precontrast and postcontrast T1-weighted VIBE acquisitions with Dixon fat suppression (VIBE-Dixon, reference standard) using 4-fold parallel imaging acceleration and 6-fold accelerated VIBE-Dixon acquisitions with partial Fourier sampling utilizing a novel DL reconstruction tailored to the acquisition. A qualitative image analysis was performed by 4 readers. Acquisition time, image sharpness, overall image quality, image noise and artifacts, diagnostic confidence, as well as pancreatic lesion conspicuity and size were compared. Furthermore, a quantitative analysis of SNR and CNR was performed. RESULTS: Thirty-two participants were evaluated (mean age ± SD, 62 ± 19 years; 20 men). The VIBE-DixonDL method enabled up to 52% reduction in average breath-hold time (7 seconds for VIBE-DixonDL vs 15 seconds for VIBE-Dixon, P < 0.001). A significant improvement of image sharpness, overall image quality, diagnostic confidence, and pancreatic lesion conspicuity was observed in the images recorded using VIBE-DixonDL (P < 0.001). Furthermore, a significant reduction of image noise and motion artifacts was noted in the images recorded using the VIBE-DixonDL technique (P < 0.001). In addition, for all readers, there was no evidence of a difference in lesion size measurement between VIBE-Dixon and VIBE-DixonDL. Interreader agreement between VIBE-Dixon and VIBE-DixonDL regarding lesion size was excellent (intraclass correlation coefficient, >90). Finally, a statistically significant increase of pancreatic SNR in VIBE-DIXONDL was observed in both the precontrast (P = 0.025) and postcontrast images (P < 0.001). Also, an increase of splenic SNR in VIBE-DIXONDL was observed in both the precontrast and postcontrast images, but only reaching statistical significance in the postcontrast images (P = 0.34 and P = 0.003, respectively). Similarly, an increase of pancreas CNR in VIBE-DIXONDL was observed in both the precontrast and postcontrast images, but only reaching statistical significance in the postcontrast images (P = 0.557 and P = 0.026, respectively). CONCLUSIONS: The prospectively accelerated, DL-enhanced VIBE with Dixon fat suppression was clinically feasible. It enabled a 52% reduction in breath-hold time and provided superior image quality, diagnostic confidence, and pancreatic lesion conspicuity. This technique might be especially useful for patients with limited breath-hold capacity.

15.
Acad Radiol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955591

RESUMEN

RATIONALE AND OBJECTIVES: To compare a conventional T1 volumetric interpolated breath-hold examination (VIBE) with SPectral Attenuated Inversion Recovery (SPAIR) fat saturation and a deep learning (DL)-reconstructed accelerated VIBE sequence with SPAIR fat saturation achieving a 50 % reduction in breath-hold duration (hereafter, VIBE-SPAIRDL) in terms of image quality and diagnostic confidence. MATERIALS AND METHODS: This prospective study enrolled consecutive patients referred for upper abdominal MRI from November 2023 to December 2023 at a single tertiary center. Patients underwent upper abdominal MRI with acquisition of non-contrast and gadobutrol-enhanced conventional VIBE-SPAIR (fourfold acceleration, acquisition time 16 s) and VIBE-SPAIRDL (sixfold acceleration, acquisition time 8 s) on a 1.5 T scanner. Image analysis was performed by four readers, evaluating homogeneity of fat suppression, perceived signal-to-noise ratio (SNR), edge sharpness, artifact level, lesion detectability and diagnostic confidence. A statistical power analysis for patient sample size estimation was performed. Image quality parameters were compared by a repeated measures analysis of variance, and interreader agreement was assessed using Fleiss' κ. RESULTS: Among 450 consecutive patients, 45 patients were evaluated (mean age, 60 years ± 15 [SD]; 27 men, 18 women). VIBE-SPAIRDL acquisition demonstrated superior SNR (P < 0.001), edge sharpness (P < 0.001), and reduced artifacts (P < 0.001) with substantial to almost perfect interreader agreement for non-contrast (κ: 0.70-0.91) and gadobutrol-enhanced MRI (κ: 0.68-0.87). No evidence of a difference was found between conventional VIBE-SPAIR and VIBE-SPAIRDL regarding homogeneity of fat suppression, lesion detectability, or diagnostic confidence (all P > 0.05). CONCLUSION: Deep learning reconstruction of VIBE-SPAIR facilitated a reduction of breath-hold duration by half, while reducing artifacts and improving image quality. SUMMARY: Deep learning reconstruction of prospectively accelerated T1 volumetric interpolated breath-hold examination for upper abdominal MRI enabled a 50 % reduction in breath-hold time with superior image quality. KEY RESULTS: 1) In a prospective analysis of 45 patients referred for upper abdominal MRI, accelerated deep learning (DL)-reconstructed VIBE images with spectral fat saturation (SPAIR) showed better overall image quality, with better perceived signal-to-noise ratio and less artifacts (all P < 0.001), despite a 50 % reduction in acquisition time compared to conventional VIBE. 2) No evidence of a difference was found between conventional VIBE-SPAIR and accelerated VIBE-SPAIRDL regarding lesion detectability or diagnostic confidence.

16.
J Clin Med ; 13(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892992

RESUMEN

Neuroendocrine neoplasms (NENs) are a diverse group of tumors with varying clinical behaviors. Their incidence has risen due to increased awareness, improved diagnostics, and aging populations. The 2019 World Health Organization classification emphasizes integrating radiology and histopathology to characterize NENs and create personalized treatment plans. Imaging methods like CT, MRI, and PET/CT are crucial for detection, staging, treatment planning, and monitoring, but each of them poses different interpretative challenges and none are immune to pitfalls. Treatment options include surgery, targeted therapies, and chemotherapy, based on the tumor type, stage, and patient-specific factors. This review aims to provide insights into the latest developments and challenges in NEN imaging, diagnosis, and management.

17.
Urologie ; 62(5): 449-458, 2023 May.
Artículo en Alemán | MEDLINE | ID: mdl-36941383

RESUMEN

Multiparametric MRI (mpMRI) is one of the primary diagnostic tools for detecting clinically relevant prostate cancer. It should be routinely used in addition to urological investigations owing to its higher diagnostic yield than systematic biopsies. However, combining targeted and systematic biopsies achieves the highest diagnostic rate. The Prostate Imaging Reporting and Data System (PI-RADS Version 2.1) standardizes the acquisition and interpretation of mpMRI of the prostate. It consists of high-resolution T2- and diffusion-weighted images, the corresponding apparent diffusion coefficient (ADC) maps, and a dynamic contrast-enhanced sequence. Reports describe the increasing likelihood of clinically significant prostate cancer with PI-RADS categories 1-5. The MRI sequence determining the PI-RADS category of a lesion depends on its location within the prostate: in the transitional zone, the T2-weighted sequence and, in the peripheral zone, the diffusion-weighted sequence are the primary determinants. The diffusion-weighted and contrast-enhanced sequences provide secondary classification for the transitional and peripheral zones, respectively. This review summarizes and illustrates the diagnostic criteria defined in PI-RADS 2.1. In addition, evidence for mpMRI of the prostate, its indication and implementation are described.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico , Imagen de Difusión por Resonancia Magnética/métodos
18.
Eur J Radiol ; 165: 110953, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37399667

RESUMEN

PURPOSE: Routine multiparametric MRI of the prostate reduces overtreatment and increases sensitivity in the diagnosis of the most common solid cancer in men. However, the capacity of MRI systems is limited. Here we investigate the ability of deep learning image reconstruction to accelerate time consuming diffusion-weighted imaging (DWI) acquisition while maintaining diagnostic image quality. METHOD: In this retrospective study, raw data of DWI sequences of consecutive patients undergoing MRI of the prostate at a tertiary care hospital in Germany were reconstructed using standard and deep learning reconstruction. To simulate a shortening of acquisition times by 39 %, one instead of two and six instead of ten averages were used in the reconstruction of b = 0 and 1000 s/mm2 images, respectively. Image quality was assessed by three radiologists and objective image quality metrics. RESULTS: After the application of exclusion criteria, 35 out of 147 patients examined between September 2022 and January 2023 were included in this study. The radiologists perceived less image noise on deep learning reconstructed images at b = 0 s/mm2 images and ADC maps with good inter-reader agreement. Signal-to-noise ratios were similar overall with discretely reduced values in the transitional zone after deep learning reconstruction. CONCLUSIONS: An acquisition time reduction of 39 % without loss in image quality is feasible in DWI of the prostate when using deep learning image reconstruction.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Estudios Retrospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos
19.
Front Med (Lausanne) ; 10: 1169451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448797

RESUMEN

Objective: Patients with impaired kidney function are at elevated risk for nephrotoxicity and hematotoxicity from peptide receptor radionuclide therapy (PPRT) for advanced neuroendocrine tumors. Somatostatin receptor (SSR)-PET/CT imaging is the method of choice to identify sufficient SSR expression as a prerequisite for PRRT. Therefore, our study aimed to explore whether split renal function could be evaluated using imaging data from routine SSR-PET/CT prior to PRRT. Methods: In total, 25 consecutive patients who underwent SSR-PET/CT (Siemens Biograph mCT®) before PRRT between June 2019 and December 2020 were enrolled in this retrospective study. PET acquisition in the caudocranial direction started at 20 ± 0.5 min after an i.v. injection of 173 ± 20 MBq [68Ga]Ga-ha DOTATATE, and the kidneys were scanned at 32 ± 0.5 min p.i. The renal parenchyma was segmented semi-automatically using an SUV-based isocontour (SUV between 5 and 15). Multiple parameters including SUVmean of renal parenchyma and blood pool, as well as parenchyma volume, were extracted, and accumulation index (ACI: renal parenchyma volume/SUVmean) and total kidney accumulation (TKA: SUVmean x renal parenchyma volume) were calculated. All data were correlated with the reference standard tubular extraction rate (TER-MAG) from [99mTc]Tc-MAG3 scintigraphy and glomerular filtration rate (GFRCDK - EPI). Results: SUVmean of the parenchymal tracer retention showed a negative correlation with TERMAG (r: -0.519, p < 0.001) and GFRCDK - EPI (r: -0.555, p < 0.001) at 32 min p.i. The herein-introduced ACI revealed a significant correlation (p < 0.05) with the total tubular function (r: 0.482), glomerular renal function (r: 0.461), split renal function (r: 0.916), and absolute single-sided renal function (r: 0.549). The mean difference between the split renal function determined by renal scintigraphy and ACI was 1.8 ± 4.2 % points. Conclusion: This pilot study indicates that static [68Ga]Ga-ha DOTATATE PET-scans at 32 min p.i. may be used to estimate both split renal function and absolute renal function using the herein proposed "Accumulation Index" (ACI).

20.
Front Oncol ; 13: 1085874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860310

RESUMEN

Background: High-Grade Serous Ovarian Carcinoma (HGSOC) is the most prevalent and lethal subtype of ovarian cancer, but has a paucity of clinically-actionable biomarkers due to high degrees of multi-level heterogeneity. Radiogenomics markers have the potential to improve prediction of patient outcome and treatment response, but require accurate multimodal spatial registration between radiological imaging and histopathological tissue samples. Previously published co-registration work has not taken into account the anatomical, biological and clinical diversity of ovarian tumours. Methods: In this work, we developed a research pathway and an automated computational pipeline to produce lesion-specific three-dimensional (3D) printed moulds based on preoperative cross-sectional CT or MRI of pelvic lesions. Moulds were designed to allow tumour slicing in the anatomical axial plane to facilitate detailed spatial correlation of imaging and tissue-derived data. Code and design adaptations were made following each pilot case through an iterative refinement process. Results: Five patients with confirmed or suspected HGSOC who underwent debulking surgery between April and December 2021 were included in this prospective study. Tumour moulds were designed and 3D-printed for seven pelvic lesions, covering a range of tumour volumes (7 to 133 cm3) and compositions (cystic and solid proportions). The pilot cases informed innovations to improve specimen and subsequent slice orientation, through the use of 3D-printed tumour replicas and incorporation of a slice orientation slit in the mould design, respectively. The overall research pathway was compatible with implementation within the clinically determined timeframe and treatment pathway for each case, involving multidisciplinary clinical professionals from Radiology, Surgery, Oncology and Histopathology Departments. Conclusions: We developed and refined a computational pipeline that can model lesion-specific 3D-printed moulds from preoperative imaging for a variety of pelvic tumours. This framework can be used to guide comprehensive multi-sampling of tumour resection specimens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA