Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Invest ; 103(11): 100256, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797886

RESUMEN

We examined the effects of gene ablation and chemical inhibition of transient receptor potential ankyrin 1 (TRPA1) on the growth of experimental argon laser-induced choroidal neovascularization (CNV) in mice. CNV was induced in the eyes of 6- to 8-week-old TRPA1-null (knockout [KO]) and wild-type (WT) mice by argon laser irradiation. Gene expression analysis was performed in laser-injured tissues at days 1 and 3. CNV growth was evaluated at day 14. Reciprocal bone marrow transplantation was performed between each genotype to identify the components responsible for either recipient tissue or bone marrow-derived inflammatory cells. Our results show that laser irradiation successfully induced CNV growth at the site of laser injury. The size of induced CNV was significantly smaller in KO mice than in WT mice at day 14, as determined by angiography with fluorescein isothiocyanate-dextran. Invasion of neutrophils, but not macrophages, was suppressed in association with suppression of the expression of transforming growth factor ß1 and interleukin 6 in laser-irradiated KO tissue. Bone marrow transplantation indicated that the genotype of the recipient mouse, but not of inflammatory cells, is attributable to the KO phenotype. Systemic administration of a TRPA1 antagonist also reduced the CNV in a WT mouse. In conclusion, TRPA1 signaling in local cells is involved in growth of laser-induced CNV. The phenotype was not attributable to vascular endothelial cells and inflammatory cells. Blocking TRPA1 signal may therefore be a potential treatment strategy for CNV-related ocular diseases.


Asunto(s)
Neovascularización Coroidal , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Argón , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Rayos Láser , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Factor de Crecimiento Transformador beta1/genética
2.
Exp Eye Res ; 181: 90-97, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30633924

RESUMEN

Corneal neovascularization and inflammatory fibrosis induced by severe injury or infection leads to tissue opacification and even blindness. Transient receptor potential (TRP) channel subtypes contribute to mediating these maladaptive responses through their interactions with other receptors. TRPV1 is one of the contributing channel isoforms inducing neovascularization in an alkali burn mouse wound healing model. VEGF-A upregulation contributes to neovascularization through interaction with its cognate receptors (VEGFR). Since the TRP isoform in this tissue, TRPA1, is also involved, we determined here if one of the pathways mediating neovascularization and immune cell infiltration involve an interaction between VEGFR and TRPA1 in a cauterization corneal mouse wound healing model. Localization of TRPA1 and endothelial cell (EC) CD31 immunostaining pattern intensity determined if TRPA1 expression was EC delimited during cauterization induced angiogenesis. Quantitative RT-PCR evaluated the effects of the absence of TRPA1 function on VEGF-A and TGF-ß1 mRNA expression during this process. Macrophage infiltration increased based on rises in F4/80 antigen immunoreactivity. TRPA1 immunostaining was absent on CD31-immunostained EC cells undergoing neovascularization, but it was present on other cell type(s) adhering to EC in vivo. Absence of TRPA1 expression suppressed both stromal neovascularization and inhibited macrophage infiltration. Similarly, the increases occurring in both VEGF-A and TGF-ß1 mRNA expression levels in WT tissue were blunted in the TRPA1-/- counterpart. On the other hand, in the macrophages their levels were invariant and their infiltration was inhibited. To determine if promotion by TRPA1 of angiogenesis was dependent on its expression on other unidentified cell types, the effects were compared of pharmacological manipulation of TRPA1 activity on EC proliferation tube formation and migration. In the presence and absence of a fibroblast containing feeder layer. Neither VEGF-induced increases in human vascular endothelial cell (HUVEC) proliferation nor migration were changed by a TRPA1 antagonist HC-030031 in the absence of a feeder layer. However, on a fibroblast feeder layer this antagonist suppressed HUVEC tube formation. In conclusion, during corneal wound healing transactivation by VEGFR of TRPA1 contributes to mediating neovascularization and macrophage infiltration. Such crosstalk is possible because of close proximity between VEGFR delimited expression on EC and TRPA1 expression restricted to cell types adhering to EC.


Asunto(s)
Neovascularización de la Córnea/fisiopatología , Sustancia Propia/patología , Canal Catiónico TRPA1/deficiencia , Animales , Neovascularización de la Córnea/metabolismo , Sustancia Propia/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA