Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 30(9): 2178-2196, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33639022

RESUMEN

The phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have a complex history of symbiont acquisition, loss, and replacement throughout their evolution. These processes have resulted in the establishment of different, phylogenetically distant bacteria as obligate mutualists in different louse groups. By combining metagenomics and amplicon screening across several populations of three louse species (members of the genera Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its independent origin in the two louse genera. While the genomes of these symbionts are highly similar, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseriaceae-related bacterium is a dominant obligate symbiont present across several host populations. In contrast, the Polyplax microbiomes are dominated by the obligate symbiont Legionella polyplacis, with the Neisseriaceae-related bacterium co-occurring only in some samples and with much lower abundance. The results thus support the view that compared to other exclusively blood feeding insects, Anoplura possess a unique capacity to acquire symbionts from diverse groups of bacteria.


Asunto(s)
Anoplura , Microbiota , Neisseriaceae , Animales , Microbiota/genética , Neisseria , Filogenia , Simbiosis
2.
Photosynth Res ; 142(2): 137-151, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31375979

RESUMEN

Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.


Asunto(s)
Agua Dulce , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Estramenopilos/metabolismo , Estramenopilos/efectos de la radiación , Diurona , Proteínas de la Membrana/metabolismo , Pigmentos Biológicos/metabolismo , Espectrometría de Fluorescencia , Temperatura , Tilacoides/metabolismo
3.
Biochim Biophys Acta ; 1847(6-7): 534-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25748970

RESUMEN

The remarkable adaptability of diatoms living in a highly variable environment assures their prominence among marine primary producers. The present study integrates biochemical, biophysical and genomic data to bring new insights into the molecular mechanism of chromatic adaptation of pennate diatoms in model species Phaeodactylum tricornutum, a marine eukaryote alga possessing the capability to shift its absorption up to ~700 nm as a consequence of incident light enhanced in the red component. Presence of these low energy spectral forms of Chl a is manifested by room temperature fluorescence emission maximum at 710 nm (F710). Here we report a successful isolation of the supramolecular protein complex emitting F710 and identify a member of the Fucoxanthin Chlorophyll a/c binding Protein family, Lhcf15, as its key building block. This red-shifted antenna complex of P. tricornutum appears to be functionally connected to photosystem II. Phylogenetic analyses do not support relation of Lhcf15 of P. tricornutum to other known red-shifted antenna proteins thus indicating a case of convergent evolutionary adaptation towards survival in shaded environments.


Asunto(s)
Adaptación Fisiológica , Clorofila/metabolismo , Color , Diatomeas/fisiología , Fluorescencia , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila A , Luz , Filogenia , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray
4.
Photosynth Res ; 128(1): 93-102, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26589322

RESUMEN

Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna-Matthews-Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed.


Asunto(s)
Proteínas Bacterianas/química , Chlorobi/química , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Citoplasma/química , Membranas Intracelulares/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/ultraestructura , Microscopía Electrónica de Transmisión , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo
5.
Biochim Biophys Acta ; 1837(6): 802-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24486443

RESUMEN

A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI.


Asunto(s)
Apicomplexa/metabolismo , Clorofila/metabolismo , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta/métodos , Resinas de Intercambio Aniónico , Clorofila A , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Dicroismo Circular
6.
Biochim Biophys Acta ; 1837(10): 1748-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24928296

RESUMEN

We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency.


Asunto(s)
Alveolados/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila A , Espectrometría de Fluorescencia
7.
Biochim Biophys Acta ; 1827(6): 723-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23428396

RESUMEN

The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms.


Asunto(s)
Alveolados/metabolismo , Complejos de Proteína Captadores de Luz/fisiología , Fotosíntesis , Proteínas de Unión a Clorofila/fisiología , Dicroismo Circular , Complejo de Proteína del Fotosistema I/fisiología
8.
Photosynth Res ; 121(1): 79-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24715699

RESUMEN

Fucoxanthin-chlorophyll proteins (FCP) are the major light-harvesting proteins of diatom algae, a major contributor to marine carbon fixation. FCP complexes from representatives of centric (Cyclotella meneghiniana) and pennate (Phaeodactylum tricornutum) diatoms were prepared by sucrose gradient centrifugation and studied by means of electron microscopy followed by single particle analysis. The oligomeric FCP from a centric diatom were observed to take the form of unusual chain-like or circular shapes, a very unique supramolecular assembly for such antennas. The existence of the often disputed oligomeric form of FCP in pennate diatoms has been confirmed. Contrary to the centric diatom FCP, pennate diatom FCP oligomers are very similar to oligomeric antennas from related heterokont (Stramenopila) algae. Evolutionary aspects of the presence of novel light-harvesting protein arrangement in centric diatoms are discussed.


Asunto(s)
Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/química , Diatomeas/metabolismo , Microscopía Electrónica de Transmisión , Tilacoides/química , Tilacoides/metabolismo
9.
Photosynth Res ; 122(1): 13-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24760483

RESUMEN

The arrangement of core antenna complexes (B808-866-RC) in the cytoplasmic membrane of filamentous phototrophic bacterium Chloroflexus aurantiacus was studied by electron microscopy in cultures from different light conditions. A typical nearest-neighbor center-to-center distance of ~18 nm was found, implying less protein crowding compared to membranes of purple bacteria. A mean RC:chlorosome ratio of 11 was estimated for the occupancy of the membrane directly underneath each chlorosome, based on analysis of chlorosome dimensions and core complex distribution. Also presented are results of single-particle analysis of core complexes embedded in the native membrane.


Asunto(s)
Chloroflexus/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Luz , Microscopía Electrónica , Orgánulos/metabolismo , Orgánulos/ultraestructura , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodopseudomonas/metabolismo
10.
J Chem Phys ; 140(11): 115103, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655205

RESUMEN

Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm(-1) that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.


Asunto(s)
Chlorobium/química , Cromosomas Bacterianos/química , Difusión , Transferencia de Energía
11.
Nucleic Acids Res ; 40(16): e121, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22544706

RESUMEN

Fluorescence resonance energy transfer (FRET) under in vivo conditions is a well-established technique for the evaluation of populations of protein bound/unbound nucleic acid (NA) molecules or NA hybridization kinetics. However, in vivo FRET has not been applied to in vivo quantitative conformational analysis of NA thus far. Here we explored parameters critical for characterization of NA structure using single-pair (sp)FRET in the complex cellular environment of a living Escherichia coli cell. Our measurements showed that the fluorophore properties in the cellular environment differed from those acquired under in vitro conditions. The precision for the interprobe distance determination from FRET efficiency values acquired in vivo was found lower (≈ 31%) compared to that acquired in diluted buffers (13%). Our numerical simulations suggest that despite its low precision, the in-cell FRET measurements can be successfully applied to discriminate among various structural models. The main advantage of the in-cell spFRET setup presented here over other established techniques allowing conformational analysis in vivo is that it allows investigation of NA structure in various cell types and in a native cellular environment, which is not disturbed by either introduced bulk NA or by the use of chemical transfectants.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Escherichia coli/genética , Conformación de Ácido Nucleico
12.
J Am Chem Soc ; 134(28): 11611-7, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22690836

RESUMEN

Chlorosomes are light-harvesting antennae that enable exceptionally efficient light energy capture and excitation transfer. They are found in certain photosynthetic bacteria, some of which live in extremely low-light environments. In this work, chlorosomes from the green sulfur bacterium Chlorobaculum tepidum were studied by coherent electronic two-dimensional (2D) spectroscopy. Previously uncharacterized ultrafast energy transfer dynamics were followed, appearing as evolution of the 2D spectral line-shape during the first 200 fs after excitation. Observed initial energy flow through the chlorosome is well explained by effective exciton diffusion on a sub-100 fs time scale, which assures efficiency and robustness of the process. The ultrafast incoherent diffusion-like behavior of the excitons points to a disordered energy landscape in the chlorosome, which leads to a rapid loss of excitonic coherences between its structural subunits. This disorder prevents observation of excitonic coherences in the experimental data and implies that the chlorosome as a whole does not function as a coherent light-harvester.


Asunto(s)
Cromosomas Bacterianos , Análisis Espectral/métodos , Difusión
13.
PLoS One ; 17(7): e0271444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35834588

RESUMEN

Obligate symbiotic bacteria associated with the insects feeding exclusively on vertebrate blood are supposed to complement B vitamins presumably lacking in their diet. Recent genomic analyses revealed considerable differences in biosynthetic capacities across different symbionts, suggesting that levels of B vitamins may vary across different vertebrate hosts. However, a rigorous determination of B vitamins content in blood of various vertebrates has not yet been approached. A reliable analytical method focused on B vitamin complex in blood can provide valuable informative background and understanding of general principles of insect symbiosis. In this work, a chromatographic separation of eight B vitamins (thiamine, riboflavin, niacin, pantothenic acid, pyridoxine, biotin, folic acid, and cyanocobalamine), four B vitamin derivatives (niacinamide, pyridoxal-5-phosphate, 4-pyridoxic acid, and tetrahydrofolic acid), and 3 stable isotope labelled internal standards was developed. Detection was carried out using dual-pressure linear ion trap mass spectrometer in FullScan MS/MS and SIM mode. Except for vitamin B9 (tetrahydrofolic acid), the instrument quantitation limits of all analytes were ranging from 0.42 to 5.0 µg/L, correlation coefficients from 0.9997 to 1.0000, and QC coefficients from 0.53 to 3.2%. Optimization of whole blood sample preparation step was focused especially on evaluation of two types of protein-precipitation agents: trichloroacetic acid and zinc sulphate in methanol. The best results were obtained for zinc sulphate in methanol, but only nine analytes were successfully validated. Accuracy of the procedure using this protein-precipitating agent was ranging from 89 to 120%, precision from 0.5 to 13%, and process efficiency from 65 to 108%. The content of B vitamins in whole blood samples from human and various vertebrates is presented as an application example of this newly developed method.


Asunto(s)
Complejo Vitamínico B , Animales , Cromatografía Liquida/métodos , Ácido Fólico/análisis , Humanos , Metanol , Riboflavina/análisis , Espectrometría de Masas en Tándem/métodos , Tiamina/análisis , Sulfato de Zinc
14.
Biochemistry ; 50(39): 8291-301, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21866915

RESUMEN

Can Trolox, a water-soluble analogue of α-tocopherol and a scavenger of singlet oxygen ((1)O(2)), provide photoprotection, under high irradiance, to the isolated photosystem II (PSII) reaction center (RC)? To answer the question, we studied the endogenous production of (1)O(2) in preparations of the five-chlorophyll PSII RC (RC5) containing only one ß-carotene molecule. The temporal profile of (1)O(2) emission at 1270 nm photogenerated by RC5 in D(2)O followed the expected biexponential behavior, with a rise time, unaffected by Trolox, of 13 ± 1 µs and decay times of 54 ± 2 µs (without Trolox) and 38 ± 2 µs (in the presence of 25 µM Trolox). The ratio between the total (k(t)) and chemical (k(r)) bimolecular rate constants for the scavenging of (1)O(2) by Trolox in aqueous buffer was calculated to be ~1.3, with a k(t) of (2.4 ± 0.2) × 10(8) M(-1) s(-1) and a k(r) of (1.8 ± 0.2) × 10(8) M(-1) s(-1), indicating that most of the (1)O(2) photosensitized by methylene blue chemically reacts with Trolox in the assay buffer. The photoinduced oxygen consumption in the oxygen electrode, when RC5 and Trolox were mixed, revealed that Trolox was a better (1)O(2) scavenger than histidine and furfuryl alcohol at low concentrations (i.e., <1 mM). After its incorporation into detergent micelles in unbuffered solutions, Trolox was able to photoprotect the surface-exposed regions of the D1-D2 heterodimer, but not the RC5 pigments, which were oxidized, together with the membrane region of the protein matrix of the PSII RC, by (1)O(2). These results are discussed and compared with those of studies dealing with the physiological role of tocopherol molecules as a (1)O(2) scavenger in thylakoid membranes of photosynthetic organisms.


Asunto(s)
Cromanos/farmacología , Complejo de Proteína del Fotosistema II/metabolismo , Oxígeno Singlete/química , Vitamina E/análogos & derivados , Pisum sativum/química , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de la radiación , Análisis Espectral , alfa-Tocoferol/análogos & derivados
15.
Biochim Biophys Acta ; 1797(1): 89-97, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19761753

RESUMEN

The freshwater filamentous green oxyphotobacterium Prochlorothrix hollandica is an unusual oxygenic photoautotrophic cyanobacterium differing from most of the others by the presence of light-harvesting Pcb antenna binding both chlorophylls a and b and by the absence of phycobilins. The pigment-protein complexes of P. hollandica SAG 10.89 (CCAP 1490/1) were isolated from dodecylmaltoside solubilized thylakoid membranes on sucrose density gradient and characterized by biochemical, spectroscopic and immunoblotting methods. The Pcb antennae production is suppressed by high light conditions (>200 mumol photons m(-2) s(-1)) in P. hollandica. PcbC protein was found either in higher oligomeric states or coupled to PS I (forming antenna rings around PS I). PcbA and PcbB are most probably only very loosely bound to photosystems; we assume that these pigment-protein complexes function as low light-induced mobile antennae. Further, we have detected alpha-carotene in substantial quantities in P. hollandica thylakoid membranes, indicating the presence of chloroplast-like carotenoid synthetic pathway which is not present in common cyanobacteria.


Asunto(s)
Fotosíntesis/fisiología , Prochlorothrix/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Luz , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Complejo de Proteína del Fotosistema II/metabolismo , Proclorofitas/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestructura
16.
J Am Chem Soc ; 133(17): 6703-10, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21476570

RESUMEN

Chlorosomes are light-harvesting antennae of photosynthetic bacteria containing large numbers of self-aggregated bacteriochlorophyll (BChl) molecules. They have developed unique photophysical properties that enable them to absorb light and transfer the excitation energy with very high efficiency. However, the molecular-level organization, that produces the photophysical properties of BChl molecules in the aggregates, is still not fully understood. One of the reasons is heterogeneity in the chlorosome structure which gives rise to a hierarchy of structural and energy disorder. In this report, we for the first time directly measure absorption linear dichroism (LD) on individual, isolated chlorosomes. Together with fluorescence-detected three-dimensional LD, these experiments reveal a large amount of disorder on the single-chlorosome level in the form of distributions of LD observables in chlorosomes from wild-type bacterium Chlorobaculum tepidum . Fluorescence spectral parameters, such as peak wavelength and bandwidth, are measures of the aggregate excitonic properties. These parameters obtained on individual chlorosomes are uncorrelated with the observed LD distributions and indicate that the observed disorder is due to inner structural disorder along the chlorosome long axis. The excitonic disorder that is also present is not manifested in the LD distributions. Limiting values of the LD parameter distributions, which are relatively free of the effect of structural disorder, define a range of angles at which the excitonic dipole moment is oriented with respect to the surface of the two-dimensional aggregate of BChl molecules. Experiments on chlorosomes of a triple mutant of Chlorobaculum tepidum show that the mutant chlorosomes have significantly less inner structural disorder and higher symmetry, compatible with a model of well-ordered concentric cylinders. Different values of the transition dipole moment orientations are consistent with a different molecular level organization of BChl's in the mutant and wild-type chlorosomes.


Asunto(s)
Bacterioclorofilas/química , Chlorobi/citología , Chlorobi/química , Microscopía Fluorescente , Espectrometría de Fluorescencia
17.
Photosynth Res ; 108(1): 25-32, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21455629

RESUMEN

Photosynthetic carbon fixation by Chromophytes is one of the significant components of a carbon cycle on the Earth. Their photosynthetic apparatus is different in pigment composition from that of green plants and algae. In this work we report structural maps of photosystem I, photosystem II and light harvesting antenna complexes isolated from a soil chromophytic alga Xanthonema debile (class Xanthophyceae). Electron microscopy of negatively stained preparations followed by single particle analysis revealed that the overall structure of Xanthophytes' PSI and PSII complexes is similar to that known from higher plants or algae. Averaged top-view projections of Xanthophytes' light harvesting antenna complexes (XLH) showed two groups of particles. Smaller ones that correspond to a trimeric form of XLH, bigger particles resemble higher oligomeric form of XLH.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Estramenopilos/química , Clorofila/análisis , Clorofila/metabolismo , Cromatografía Líquida de Alta Presión , Complejos de Proteína Captadores de Luz/ultraestructura , Microscopía Electrónica , Fotosíntesis , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/ultraestructura , Multimerización de Proteína , Suelo , Microbiología del Suelo , Espectrometría de Fluorescencia , Estramenopilos/ultraestructura , Tilacoides/química
18.
Foods ; 10(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204538

RESUMEN

The current knowledge on how different Eurasian perch rearing systems impact the final fillet quality is scant. Therefore, two domestic storage conditions were investigated-10 months frozen (-20 °C) and 12 days refrigerated (+4 °C) storage conditions-in order to determine (i) how the choice of rearing system affects fillets quality during different processing conditions and (ii) if oxidative changes and other quality parameters were interactive. For the proposed idea, proteome analysis, oxidative changes, and some quality parameters were considered in this study. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated a higher loss of protein in the frozen fillets from ponds (PF) than the fillets from recirculating aquaculture systems (RAS) (RF). Western blot showed a higher protein carbonyls level in RF compared to PF, which was confirmed by the total protein carbonyls during frozen storage. PF indicated less liquid loss, hardness, and oxidation progress than RF in both storage conditions. The biogenic amines index (BAI) in the fillets from either origin showed acceptable levels during storage at +4 °C. Furthermore, the n-3/n-6 ratio was similar for both fillets. The deterioration of fillets during frozen storage was mainly caused by formation of ice crystals followed by protein oxidation, while protein oxidation was the main concern during refrigerated storage confirmed by principal component analysis (PCA) analysis.

19.
Photosynth Res ; 105(2): 115-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20574750

RESUMEN

The authors present a study of the fluorescence and absorbance transients occurring in whole cells of purple nonsulfur bacterium Rhodobacter sphaeroides on the millisecond timescale under pulsed actinic illumination. The fluorescence induction curve is interpreted in terms of combination of effects of redox changes in the reaction center and the membrane potential. The results of this study support the view that the membrane potential act predominantly to increase the fluorescence yield. Advantages of the pulsed actinic illumination for study of the operation of the electron transport chain in vivo are discussed.


Asunto(s)
Rhodobacter sphaeroides/metabolismo , Absorción/efectos de la radiación , Carotenoides/metabolismo , Cinética , Luz , Potenciales de la Membrana/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Rhodobacter sphaeroides/citología , Rhodobacter sphaeroides/efectos de la radiación , Espectrometría de Fluorescencia
20.
Photosynth Res ; 104(2-3): 211-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20306134

RESUMEN

Chlorosomes from green photosynthetic bacteria are large photosynthetic antennae containing self-assembling aggregates of bacteriochlorophyll c, d, or e. The pigments within chlorosomes are organized in curved lamellar structures. Aggregates with similar optical properties can be prepared in vitro, both in polar as well as non-polar solvents. In order to gain insight into their structure we examined hexane-induced aggregates of purified bacteriochlorophyll c by X-ray scattering. The bacteriochlorophyll c aggregates exhibit scattering features that are virtually identical to those of native chlorosomes demonstrating that the self-assembly of these pigments is fully encoded in their chemical structure. Thus, the hexane-induced aggregates constitute an excellent model to study the effects of chemical structure on assembly. Using bacteriochlorophyllides transesterified with different alcohols we have established a linear relationship between the esterifying alcohol length and the lamellar spacing. The results provide a structural basis for lamellar spacing variability observed for native chlorosomes from different species. A plausible physiological role of this variability is discussed. The X-ray scattering also confirmed the assignments of peaks, which arise from the crystalline baseplate in the native chlorosomes.


Asunto(s)
Alcoholes/química , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Estructuras Celulares/metabolismo , Chlorobium/metabolismo , Anisotropía , Esterificación , Hexanos/química , Estructura Cuaternaria de Proteína , Dispersión de Radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA