Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 275(1630): 11-7, 2008 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-17939984

RESUMEN

Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of righting strategies of beetle and turtle species have been described, but the exact role of the shell's geometry in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals' righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close to optimal for self-righting, and the shell's shape is the predominant factor of their ability to flip back. Our study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles with monostatic shells: beautiful forms, which rarely appear in nature otherwise.


Asunto(s)
Huesos/anatomía & histología , Modelos Anatómicos , Tortugas/fisiología , Animales , Fenómenos Biomecánicos , Matemática
2.
J Comput Neurosci ; 25(2): 245-61, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18266097

RESUMEN

Using phase response curves and averaging theory, we derive phase oscillator models for the lamprey central pattern generator from two biophysically-based segmental models. The first one relies on network dynamics within a segment to produce the rhythm, while the second contains bursting cells. We study intersegmental coordination and show that the former class of models shows more robust behavior over the animal's range of swimming frequencies. The network-based model can also easily produce approximately constant phase lags along the spinal cord, as observed experimentally. Precise control of phase lags in the network-based model is obtained by varying the relative strengths of its six different connection types with distance in a phase model with separate coupling functions for each connection type. The phase model also describes the effect of randomized connections, accurately predicting how quickly random network-based models approach the determinisitic model as the number of connections increases.


Asunto(s)
Relojes Biológicos/fisiología , Lampreas/fisiología , Locomoción/fisiología , Modelos Biológicos , Neuronas Motoras/fisiología , Redes Neurales de la Computación , Animales , Red Nerviosa/fisiología , Médula Espinal/citología , Médula Espinal/fisiología
3.
Phys Rev E ; 96(3-1): 033005, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29347014

RESUMEN

The motion of a rigid, spinning disk on a flat surface ends with a dissipation-induced finite-time singularity. The problem of finding the dominant energy absorption mechanism during the last phase of the motion generated a lively debate during the past two decades. Various candidates including air drag and different types of friction have been considered, nevertheless impacts have not been examined until now. We investigate the effect of impacts caused by geometric imperfections of the disk and of the underlying flat surface, through analyzing the dynamics of polygonal disks with unilateral point contacts. Similarly to earlier works, we determine the rate of energy absorption under the assumption of a regular pattern of motion analogous to precession-free motion of a rolling disk. In addition, we demonstrate that the asymptotic stability of this motion depends on parameters of the impact model. In the case of instability, the emerging irregular motion is investigated numerically. We conclude that there exists a range of model parameters (small radii of gyration or small restitution coefficients) in which absorption by impacts dominates all previously investigated mechanisms during the last phase of motion. Nevertheless the parameter values associated with a homogeneous disk on a hard surface are typically not in this range, hence the effect of impacts is in that case not dominant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA