Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Med ; 20(1): 158, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421980

RESUMEN

BACKGROUND: Endometriosis is a chronic, estrogen-dependent disorder where inflammation contributes to disease-associated symptoms of pelvic pain and infertility. Immune dysfunction includes insufficient immune lesion clearance, a pro-inflammatory endometrial environment, and systemic inflammation. Comprehensive understanding of endometriosis immune pathophysiology in different hormonal milieu and disease severity has been hampered by limited direct characterization of immune populations in endometrium, blood, and lesions. Simultaneous deep phenotyping at single-cell resolution of complex tissues has transformed our understanding of the immune system and its role in many diseases. Herein, we report mass cytometry and high dimensional analyses to study immune cell phenotypes, abundance, activation states, and functions in endometrium and blood of women with and without endometriosis in different cycle phases and disease stages. METHODS: A case-control study was designed. Endometrial biopsies and blood (n = 60 total) were obtained from women with (n = 20, n = 17, respectively) and without (n = 14, n = 9) endometriosis in the proliferative and secretory cycle phases of the menstrual cycle. Two mass cytometry panels were designed: one broad panel and one specific for mononuclear phagocytic cells (MPC), and all samples were multiplexed to characterize both endometrium and blood immune composition at unprecedented resolution. We combined supervised and unsupervised analyses to finely define the immune cell subsets with an emphasis on MPC. Then, association between cell types, protein expression, disease status, and cycle phase were performed. RESULTS: The broad panel highlighted a significant modification of MPC in endometriosis; thus, they were studied in detail with an MPC-focused panel. Endometrial CD91+ macrophages overexpressed SIRPα (phagocytosis inhibitor) and CD64 (associated with inflammation) in endometriosis, and they were more abundant in mild versus severe disease. In blood, classical and intermediate monocytes were less abundant in endometriosis, whereas plasmacytoid dendritic cells and non-classical monocytes were more abundant. Non-classical monocytes were higher in severe versus mild disease. CONCLUSIONS: A greater inflammatory phenotype and decreased phagocytic capacity of endometrial macrophages in endometriosis are consistent with defective clearance of endometrial cells shed during menses and in tissue homeostasis, with implications in endometriosis pathogenesis and pathophysiology. Different proportions of monocytes and plasmacytoid dendritic cells in blood from endometriosis suggest systemically aberrant functionality of the myeloid system opening new venues for the study of biomarkers and therapies for endometriosis.


Asunto(s)
Endometriosis , Estudios de Casos y Controles , Endometriosis/metabolismo , Endometrio/metabolismo , Endometrio/patología , Femenino , Humanos , Inmunofenotipificación , Inflamación/metabolismo
2.
Antimicrob Agents Chemother ; 65(11): e0058321, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370580

RESUMEN

Multiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action is DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169, and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection. The goal was to confirm the efficacy of the DprE1 inhibitors in a mouse tuberculosis model with advanced pulmonary pathology and perform comprehensive analysis of plasma, lung, and lesion-centric drug levels to establish pharmacokinetic-pharmacodynamic (PK-PD) parameters predicting efficacy at the site of infection. Results showed significant efficacy for all three DprE1 inhibitors in the C3HeB/FeJ mouse model after 2 months of treatment. Superior efficacy was observed for OPC-167832 even at low-dose levels, which can be attributed to its low MIC, favorable distribution, and sustained retention above the MIC throughout the dosing interval in caseous necrotic lesions, where the majority of bacteria reside in C3HeB/FeJ mice. These results support further progression of the three drug candidates through clinical development for tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Tiazinas , Tuberculosis , Animales , Ratones , Ratones Endogámicos C3H , Piperazinas , Tuberculosis/tratamiento farmacológico
3.
Am J Respir Cell Mol Biol ; 63(6): 780-793, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32915645

RESUMEN

Lung myeloid cells are important in pulmonary immune homeostasis and in the pathogenesis of chronic obstructive pulmonary disease (COPD). Multiparameter immunophenotypic characterization of these cells is challenging because of their autofluorescence and diversity. We evaluated the immunophenotypic landscape of airway myeloid cells in COPD using time of flight mass cytometry. Cells from BAL, which were obtained from never-smokers (n = 8) and smokers with (n = 20) and without (n = 4) spirometric COPD, were examined using a 44-parameter time of flight mass cytometry panel. Unsupervised cluster analysis was used to identify cellular subtypes that were confirmed by manual gating. We identified major populations of CD68+ and CD68- cells with 22 distinct phenotypic clusters, of which 18 were myeloid cells. We found a higher abundance of putative recruited myeloid cells (CD68+ classical monocytes) in BAL from patients with COPD. CD68+ classical monocyte population had distinct responses to smoking and COPD that were potentially related to their recruitment from the interstitium and vasculature. We demonstrate that BAL cells from smokers and subjects with COPD have lower AXL expression. Also, among subjects with COPD, we report significant differences in the abundance of PDL1high and PDL2high clusters and in the expression of PDL1 and PDL2 across several macrophage subtypes suggesting modulation of inflammatory responses. In addition, several phenotypic differences in BAL cells from subjects with history of COPD exacerbation were identified that could inform potential disease mechanisms. Overall, we report several changes to the immunophenotypic landscape that occur with smoking, COPD, and past exacerbations that are consistent with decreased regulation and increased activation of inflammatory pathways.


Asunto(s)
Antígeno B7-H1/metabolismo , Células Mieloides/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Anciano , Líquido del Lavado Bronquioalveolar/citología , Femenino , Humanos , Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumar/inmunología , Tirosina Quinasa del Receptor Axl
5.
Sci Transl Med ; 16(754): eadk3295, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959327

RESUMEN

The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.


Asunto(s)
COVID-19 , Activación de Linfocitos , Tomografía de Emisión de Positrones , ARN Viral , SARS-CoV-2 , Linfocitos T , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/patología , Linfocitos T/inmunología , Masculino , Persona de Mediana Edad , Femenino , Adulto , Anciano , Pulmón/virología , Pulmón/patología , Pulmón/diagnóstico por imagen , Factores de Tiempo
6.
Nat Commun ; 12(1): 2899, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006838

RESUMEN

There is urgent need for new drug regimens that more rapidly cure tuberculosis (TB). Existing TB drugs and regimens vary in treatment-shortening activity, but the molecular basis of these differences is unclear, and no existing assay directly quantifies the ability of a drug or regimen to shorten treatment. Here, we show that drugs historically classified as sterilizing and non-sterilizing have distinct impacts on a fundamental aspect of Mycobacterium tuberculosis physiology: ribosomal RNA (rRNA) synthesis. In culture, in mice, and in human studies, measurement of precursor rRNA reveals that sterilizing drugs and highly effective drug regimens profoundly suppress M. tuberculosis rRNA synthesis, whereas non-sterilizing drugs and weaker regimens do not. The rRNA synthesis ratio provides a readout of drug effect that is orthogonal to traditional measures of bacterial burden. We propose that this metric of drug activity may accelerate the development of shorter TB regimens.


Asunto(s)
Antituberculosos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Precursores del ARN/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/genética , Resultado del Tratamiento , Tuberculosis/diagnóstico , Tuberculosis/microbiología
7.
J Histochem Cytochem ; 68(7): 445-459, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32609561

RESUMEN

The elusive nature of assessing immunological processes in situ in organ transplantation is one of the major impediments to improve diagnostics and treatment. Here, we present a proof-of-concept study using multiplexed in situ hybridization (ISH) (RNAscope) to detect low-abundance cytokines in formalin-fixed paraffin-embedded (FFPE) human transplant kidney biopsies in combination with immunofluorescence (IF) for cell phenotyping. We show that a multiplex IF and ISH (mIFISH) assay is feasible to identify the cellular source of cytokines and chemokines (tumor necrosis factor-α, interferon-γ, and CXCL9) in FFPE transplant kidney biopsies and that quantification of the mRNA and protein signal is also possible at single-cell resolution in the context of tissue complexity. Furthermore, the mIFISH assay allows precise quantitative assessment of tubulitis, one of the key morphological correlates of alloimmune injury. Simultaneous in situ identification and quantification of multiple cellular phenotypes and mRNA expression of proinflammatory cytokines in FFPE tissues offer a novel insight into the biology of alloimmune injury in kidney transplantation and may contribute to improved diagnostic accuracy and patient care.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Hibridación in Situ/métodos , Trasplante de Riñón , Imagen Molecular , Biopsia , Humanos , Riñón/metabolismo , Riñón/patología , Antígenos Comunes de Leucocito/metabolismo , Adhesión en Parafina , Fijación del Tejido
8.
Pathog Immun ; 4(1): 147-160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139759

RESUMEN

BACKGROUND: Identifying biomarkers for cells harboring replication-competent HIV is a major research priority. Recently, there have been mixed reports addressing the possibility that CD32-expressing T cells are enriched for HIV. There is growing evidence that CD32 expression increases with cellular activation that may be related to, but not necessarily specific for, infection with HIV. However, the relationship of CD32 expression to HIV-infection in subtypes of tissue-resident leukocytes is unclear. METHODS: First, we used duplex chromogenic in situ hybridization to identify cells actively transcribing RNA for both CD32 and HIV on human gut tissues. Then we performed multiplexed immunofluorescence and in situ hybridization (mIFISH) on sections from the same tissues to determine the phenotype of individual cells co-expressing HIV-RNA and CD32-RNA. RESULTS: HIV-RNA+ cells were more abundant in tissues from viremic individuals than in those receiving suppressive anti-retroviral therapy (ART). However, staining by both methods indicated that a higher proportion of HIV-RNA+ cells co-expressed CD32-RNA in ART-suppressed individuals than in those with viremia. The majority of HIV-RNA+ cells were CD3+. CONCLUSIONS: Our data suggest that the transcription of CD32-RNA is correlated with HIV transcriptional activity in CD3+ cells found within human gut tissue. Whether or not up-regulation of CD32-RNA is a direct result of HIV transcription or more global T-cell activation remains unclear.

9.
J Histochem Cytochem ; 66(6): 427-446, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29462571

RESUMEN

Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.


Asunto(s)
ADN Viral/análisis , Técnica del Anticuerpo Fluorescente/métodos , Infecciones por VIH/patología , VIH/aislamiento & purificación , Hibridación in Situ/métodos , ARN Viral/análisis , Carga Viral/métodos , ADN Viral/genética , VIH/genética , Infecciones por VIH/virología , Humanos , Adhesión en Parafina/métodos , ARN Viral/genética , Análisis de la Célula Individual/métodos , Fijación del Tejido/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA