Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phys Rev Lett ; 126(15): 156002, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929252

RESUMEN

Understanding the structure and properties of refractory oxides is critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active learner, which is initialized by x-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multiphase potential is generated for a canonical example of the archetypal refractory oxide, HfO_{2}, by drawing a minimum number of training configurations from room temperature to the liquid state at ∼2900 °C. The method significantly reduces model development time and human effort.

2.
J Chem Inf Model ; 61(12): 5793-5803, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34905348

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) pose a significant hazard because of their widespread industrial uses, environmental persistence, and bioaccumulation. A growing, increasingly diverse inventory of PFAS, including 8163 chemicals, has recently been updated by the U.S. Environmental Protection Agency. However, with the exception of a handful of well-studied examples, little is known about their human toxicity potential because of the substantial resources required for in vivo toxicity experiments. We tackle the problem of expensive in vivo experiments by evaluating multiple machine learning (ML) methods, including random forests, deep neural networks (DNN), graph convolutional networks, and Gaussian processes, for predicting acute toxicity (e.g., median lethal dose, or LD50) of PFAS compounds. To address the scarcity of toxicity information for PFAS, publicly available datasets of oral rat LD50 for all organic compounds are aggregated and used to develop state-of-the-art ML source models for transfer learning. A total of 519 fluorinated compounds containing two or more C-F bonds with known toxicity are used for knowledge transfer to ensembles of the best-performing source model, DNN, to generate the target models for the PFAS domain with access to uncertainty. This study predicts toxicity for PFAS with a defined chemical structure. To further inform prediction confidence, the transfer-learned model is embedded within a SelectiveNet architecture, where the model is allowed to identify regions of prediction with greater confidence and abstain from those with high uncertainty using a calibrated cutoff rate.


Asunto(s)
Fluorocarburos , Animales , Fluorocarburos/química , Fluorocarburos/toxicidad , Aprendizaje Automático , Redes Neurales de la Computación , Ratas , Incertidumbre
3.
J Chem Phys ; 155(23): 234111, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937382

RESUMEN

A family of coordination complexes of the type [Ru(SO2)(NH3)4X]m+Yn - (m, n = 1 or 2) exhibit optical switching capabilities in their single-crystal states. This striking effect is caused by the light-induced formation of SO2-linkage photoisomers, which are metastable if kept at suitably cool temperatures. We modeled the dark- and light-induced states of these large crystalline complexes via plane-wave (PW)- and molecular-orbital (MO)-based density functional theory (DFT) and time-dependent DFT in order to calculate their structural and optical properties; the calculated results are compared with experimental data. We show that the PW-DFT-based periodic models replicate the structural properties of these complexes more effectively than the MO-DFT-based molecular-fragment models, observing only small deviations in key bond lengths relative to the experimentally derived crystal structures. The periodic models were also found to more effectively simulate trends seen in experimental optical absorption spectra, with optical absorbance and coverage of the visible region increasing with the formation of the photoinduced geometries. The contribution of the metastable photoisomeric species more heavily focuses on the lower-energy end of the spectra. Spectra generated from the molecular-fragment models are limited by the geometry of the fragment used and the number of excited-state roots considered in those calculations. In general, periodic models outperform the molecular-fragment models owing to their ability to better appreciate the periodic phenomena that are present in these crystalline materials as opposed to MO approaches, which are finite methods. We thus demonstrate that PW-DFT-based periodic models should be considered as a more than viable method for simulating the optical and electronic properties of these single-crystal optical switches.

4.
J Chem Inf Model ; 59(7): 3120-3127, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31145605

RESUMEN

The molecular electrostatic potential (MEP) generated by quantum chemistry methods and Gaussian functions is evaluated over graphics processing units (GPUs). This implementation is based on full-range Rys polynomials with nodes and weights obtained in each thread of a GPU. For high angular moments, the corresponding integral is solved using a one-dimension vertical recurrence relation. Thus, we computed the MEP with minimal approximations. We show that this implementation is stable and very efficient since the time consumed over GPUs is quite small compared with similar implementations over CPUs. The implementation was done by using CUDA-C programming techniques within the Graphics Processing Units for Atoms and Molecules (GPUAM) project, which has been designed to analyze quantum chemistry fields over heterogeneous computational resources. With this new scalar field GPUAM is a useful application for the quantum chemistry community, in particular for people interested in chemical reactivity analysis.


Asunto(s)
Gráficos por Computador , Programas Informáticos , Electricidad Estática , Algoritmos , Modelos Moleculares , Estructura Molecular
5.
J Comput Chem ; 39(22): 1806-1814, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30141534

RESUMEN

Integration of Shift-and-Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, and bulk water clusters. For problems with the same number of orbitals, the performance of the SLEPc eigensolver depends on the sparsity of the matrices involved, favoring reduced dimensional systems such as polyethylene or boron nitride sheets in comparison to bulk systems like water clusters. For all problems investigated, performance of SIESTA-SIPs exceeds the performance of SIESTA with default solver (ScaLAPACK) at the larger number of cores and the larger number of orbitals. A method that improves the load-balance with each iteration in the self-consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated. © 2018 Wiley Periodicals, Inc.

6.
Phys Rev Lett ; 121(14): 146401, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30339426

RESUMEN

For a class of 2D hybrid organic-inorganic perovskite semiconductors based on π-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy, and localization of carrier states in a quantum-well-like fashion. Our first-principles predictions, based on large-scale hybrid density-functional theory with spin-orbit coupling, show that the interface between the organic and inorganic parts within a single hybrid can be modulated systematically, enabling us to select between different type-I and type-II energy level alignments. Energy levels, recombination properties, and transport behavior of electrons and holes thus become tunable by choosing specific organic functionalizations and juxtaposing them with suitable inorganic components.

7.
J Chem Phys ; 148(24): 241701, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29960303

RESUMEN

We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.

8.
J Chem Phys ; 138(7): 074101, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23444991

RESUMEN

A direct method (D-ΔMBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The ΔMBPT(2) method is defined as the correlated extension of the ΔHF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-ΔMBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-ΔMBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-ΔMBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the ΔMBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from equation of motion coupled cluster singles and doubles increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the ΔMBPT(2) values. Most importantly, relaxation beyond the Hartree-Fock level is significant and needs to be included in future research.

9.
J Chem Phys ; 138(10): 104109, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23514467

RESUMEN

By adding a nonlinear core correction to the well established dual space Gaussian type pseudopotentials for the chemical elements up to the third period, we construct improved pseudopotentials for the Perdew-Burke-Ernzerhof [J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)] functional and demonstrate that they exhibit excellent accuracy. Our benchmarks for the G2-1 test set show average atomization energy errors of only half a kcal/mol. The pseudopotentials also remain highly reliable for high pressure phases of crystalline solids. When supplemented by empirical dispersion corrections [S. Grimme, J. Comput. Chem. 27, 1787 (2006); S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)] the average error in the interaction energy between molecules is also about half a kcal/mol. The accuracy that can be obtained by these pseudopotentials in combination with a systematic basis set is well superior to the accuracy that can be obtained by commonly used medium size Gaussian basis sets in all-electron calculations.

10.
Nanoscale ; 15(19): 8772-8780, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37098822

RESUMEN

Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.

11.
Chem Sci ; 14(39): 10702-10717, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829035

RESUMEN

The rational design of molecules with targeted quantum-mechanical (QM) properties requires an advanced understanding of the structure-property/property-property relationships (SPR/PPR) that exist across chemical compound space (CCS). In this work, we analyze these fundamental relationships in the sector of CCS spanned by small (primarily organic) molecules using the recently developed QM7-X dataset, a systematic, extensive, and tightly converged collection of 42 QM properties corresponding to ≈4.2M equilibrium and non-equilibrium molecular structures containing up to seven heavy/non-hydrogen atoms (including C, N, O, S, and Cl). By characterizing and enumerating progressively more complex manifolds of molecular property space-the corresponding high-dimensional space defined by the properties of each molecule in this sector of CCS-our analysis reveals that one has a substantial degree of flexibility or "freedom of design" when searching for a single molecule with a desired pair of properties or a set of distinct molecules sharing an array of properties. To explore how this intrinsic flexibility manifests in the molecular design process, we used multi-objective optimization to search for molecules with simultaneously large polarizabilities and HOMO-LUMO gaps; analysis of the resulting Pareto fronts identified non-trivial paths through CCS consisting of sequential structural and/or compositional changes that yield molecules with optimal combinations of these properties.

12.
Nanoscale ; 14(3): 617-625, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34985076

RESUMEN

The stabilization of supported nanoclusters is critical for different applications, including catalysis and plasmonics. Herein we investigate the impact of MoS2 grain boundaries (GBs) on the nucleation and growth of Pt NCs. The optimum atomic structure of the metal clusters is obtained using an adaptive genetic algorithm that employs a hybrid approach based on atomistic force fields and density functional theory. Our findings show that GBs stabilize the NCs up to a cluster size of nearly ten atoms, and with larger clusters having a similar binding to the pristine system. Notably, Pt monomers are found to be attracted to GB cores achieving 60% more stabilization compared to the pristine surface. Furthermore, we show that the nucleation and growth of the metal seeds are facile with low kinetic barriers, which are of similar magnitude to the diffusion barriers of metals on the pristine surface. The findings highlight the need to engineer ultrasmall NCs to take advantage of enhanced stabilization imparted by the GB region, particularly to circumvent sintering behavior for high-temperature applications.

13.
Nat Commun ; 13(1): 7170, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418902

RESUMEN

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.


Asunto(s)
Monóxido de Carbono , Diatomeas , Humanos , Núcleo Celular , Aberraciones Cromosómicas , Electrónica
14.
J Chem Phys ; 134(8): 084107, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21361527

RESUMEN

A systematic study of techniques for treating noncovalent interactions within the computationally efficient density functional theory (DFT) framework is presented through comparison to benchmark-quality evaluations of binding strength compiled for molecular complexes of diverse size and nature. In particular, the efficacy of functionals deliberately crafted to encompass long-range forces, a posteriori DFT+dispersion corrections (DFT-D2 and DFT-D3), and exchange-hole dipole moment (XDM) theory is assessed against a large collection (469 energy points) of reference interaction energies at the CCSD(T) level of theory extrapolated to the estimated complete basis set limit. The established S22 [revised in J. Chem. Phys. 132, 144104 (2010)] and JSCH test sets of minimum-energy structures, as well as collections of dispersion-bound (NBC10) and hydrogen-bonded (HBC6) dissociation curves and a pairwise decomposition of a protein-ligand reaction site (HSG), comprise the chemical systems for this work. From evaluations of accuracy, consistency, and efficiency for PBE-D, BP86-D, B97-D, PBE0-D, B3LYP-D, B970-D, M05-2X, M06-2X, ωB97X-D, B2PLYP-D, XYG3, and B3LYP-XDM methodologies, it is concluded that distinct, often contrasting, groups of these elicit the best performance within the accessible double-ζ or robust triple-ζ basis set regimes and among hydrogen-bonded or dispersion-dominated complexes. For overall results, M05-2X, B97-D3, and B970-D2 yield superior values in conjunction with aug-cc-pVDZ, for a mean absolute deviation of 0.41 - 0.49 kcal/mol, and B3LYP-D3, B97-D3, ωB97X-D, and B2PLYP-D3 dominate with aug-cc-pVTZ, affording, together with XYG3/6-311+G(3df,2p), a mean absolute deviation of 0.33 - 0.38 kcal/mol.


Asunto(s)
Teoría Cuántica , Simulación por Computador , Enlace de Hidrógeno , Modelos Químicos
15.
Sci Data ; 8(1): 43, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531509

RESUMEN

We introduce QM7-X, a comprehensive dataset of 42 physicochemical properties for ≈4.2 million equilibrium and non-equilibrium structures of small organic molecules with up to seven non-hydrogen (C, N, O, S, Cl) atoms. To span this fundamentally important region of chemical compound space (CCS), QM7-X includes an exhaustive sampling of (meta-)stable equilibrium structures-comprised of constitutional/structural isomers and stereoisomers, e.g., enantiomers and diastereomers (including cis-/trans- and conformational isomers)-as well as 100 non-equilibrium structural variations thereof to reach a total of ≈4.2 million molecular structures. Computed at the tightly converged quantum-mechanical PBE0+MBD level of theory, QM7-X contains global (molecular) and local (atom-in-a-molecule) properties ranging from ground state quantities (such as atomization energies and dipole moments) to response quantities (such as polarizability tensors and dispersion coefficients). By providing a systematic, extensive, and tightly-converged dataset of quantum-mechanically computed physicochemical properties, we expect that QM7-X will play a critical role in the development of next-generation machine-learning based models for exploring greater swaths of CCS and performing in silico design of molecules with targeted properties.

16.
Chemistry ; 16(10): 3057-65, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20119984

RESUMEN

Recent experimental studies on the Watson-Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high-level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two N-H...O hydrogen bonds separated by one N-H...N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pK(a) data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pK(a) values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non-natural bases.


Asunto(s)
Pirimidinas/síntesis química , Triazinas/química , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , ADN/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Químicos , Modelos Teóricos , Simulación de Dinámica Molecular , Estructura Molecular , Oligopéptidos/química , Teoría Cuántica , ARN/química
17.
Sci Data ; 6(1): 307, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804487

RESUMEN

The ability to auto-generate databases of optical properties holds great prospects in data-driven materials discovery for optoelectronic applications. We present a cognate set of experimental and computational data that describes key features of optical absorption spectra. This includes an auto-generated database of 18,309 records of experimentally determined UV/vis absorption maxima, λmax, and associated extinction coefficients, ϵ, where present. This database was produced using the text-mining toolkit, ChemDataExtractor, on 402,034 scientific documents. High-throughput electronic-structure calculations using fast (simplified Tamm-Dancoff approach) and traditional (time-dependent) density functional theory were executed to predict λmax and oscillation strengths, f (related to ϵ) for a subset of validated compounds. Paired quantities of these computational and experimental data show strong correlations in λmax, f and ϵ, laying the path for reliable in silico calculations of additional optical properties. The total dataset of 8,488 unique compounds and a subset of 5,380 compounds with experimental and computational data, are available in MongoDB, CSV and JSON formats. These can be queried using Python, R, Java, and MATLAB, for data-driven optoelectronic materials discovery.

18.
J Phys Chem B ; 122(32): 7915-7928, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30044622

RESUMEN

A coarse-grained model for simulating structural properties of double-stranded RNA is developed with parameters obtained from quantum-mechanical calculations. This model follows previous parametrization for double-stranded DNA, which is based on mapping the all-atom picture to a coarse-grained four-bead scheme. Chemical and structural differences between RNA and DNA have been taken into account for the model development. The parametrization is based on simulations using density functional theory (DFT) on separate units of the RNA molecule without implementing experimental data. The total energy is decomposed into four terms of physical significance: hydrogen bonding interaction, stacking interactions, backbone interactions, and electrostatic interactions. The first three interactions are treated within DFT, whereas the last one is included within a mean field approximation. Our double-stranded RNA coarse-grained model predicts stable helical structures for RNA. Other characteristics, such as structural or mechanical properties are reproduced with a very good accuracy. The development of the coarse-grained model for RNA allows extending the spatial and temporal length scales accessed by computer simulations and being able to model RNA-related biophysical processes, as well as novel RNA nanostructures.


Asunto(s)
Teoría Funcional de la Densidad , ARN Bicatenario/química , Emparejamiento Base , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Electricidad Estática , Termodinámica
19.
J Chem Theory Comput ; 14(4): 2246-2264, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29481740

RESUMEN

We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

20.
Chem Commun (Camb) ; 53(18): 2725-2728, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28198893

RESUMEN

We report the use of time-resolved X-ray absorption spectroscopy in the ns-µs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy)3]2+/ a diiron(iii,iii) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(iii,iii) and reduced diiron(ii,ii) states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA