Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(37): e2304722120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669378

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2). The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection. The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Metaboloma
2.
Brain ; 147(7): 2384-2399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38462574

RESUMEN

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Proto-Oncogenes Mas , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Neuronas/metabolismo , Proteínas tau/metabolismo , Ratones , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Humanos , Ratones Transgénicos
3.
J Biol Chem ; 299(11): 105320, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37802315

RESUMEN

Autoantibodies to malondialdehyde (MDA) proteins constitute a subset of anti-modified protein autoantibodies in rheumatoid arthritis (RA), which is distinct from citrulline reactivity. Serum anti-MDA IgG levels are commonly elevated in RA and correlate with disease activity, CRP, IL6, and TNF-α. MDA is an oxidation-associated reactive aldehyde that together with acetaldehyde mediates formation of various immunogenic amino acid adducts including linear MDA-lysine, fluorescent malondialdehyde acetaldehyde (MAA)-lysine, and intramolecular cross-linking. We used single-cell cloning, generation of recombinant antibodies (n = 356 from 25 donors), and antigen-screening to investigate the presence of class-switched MDA/MAA+ B cells in RA synovium, bone marrow, and bronchoalveolar lavage. Anti-MDA/MAA+ B cells were found in bone marrow plasma cells of late disease and in the lung of both early disease and risk-individuals and in different B cell subsets (memory, double negative B cells). These were compared with previously identified anti-MDA/MAA from synovial memory and plasma cells. Seven out of eight clones carried somatic hypermutations and all bound MDA/MAA-lysine independently of protein backbone. However, clones with somatic hypermutations targeted MAA cross-linked structures rather than MDA- or MAA-hapten, while the germline-encoded synovial clone instead bound linear MDA-lysine in proteins and peptides. Binding patterns were maintained in germline converted clones. Affinity purification of polyclonal anti-MDA/MAA from patient serum revealed higher proportion of anti-MAA versus anti-MDA compared to healthy controls. In conclusion, IgG anti-MDA/MAA show distinct targeting of different molecular structures. Anti-MAA IgG has been shown to promote bone loss and osteoclastogenesis in vivo and may contribute to RA pathogenesis.


Asunto(s)
Artritis Reumatoide , Linfocitos B , Humanos , Acetaldehído/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Autoanticuerpos , Médula Ósea/metabolismo , Inmunoglobulina G/metabolismo , Pulmón/metabolismo , Lisina/metabolismo , Malondialdehído/metabolismo , Linfocitos B/inmunología , Linfocitos B/patología , Autoinmunidad
4.
Allergy ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898695

RESUMEN

BACKGROUND AND OBJECTIVES: Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. METHODS: Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. RESULTS: Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular-viral networks, emphasizing highly relevant virus-specific pathways, independent of viral replication kinetics. CONCLUSION: This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers crucial insights that allow for a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.

5.
Cell Mol Life Sci ; 80(9): 268, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632572

RESUMEN

Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes. The BAV ECM showed enrichment with fibrosis markers, namely Tenascin C, Osteoprotegerin, and Thrombospondin-2. The abnormal physical stress on BAV may cause a mechanical injury leading to a continuous Tenascin C-driven presence of myofibroblasts and persistent fibrosis. The TAV ECM exhibited enrichment with Annexin A3 (p = 1.1 × 10-16 and the fold change 6.5) and a significant deficit in proteins involved in high-density lipid metabolism. These results were validated by orthogonal methods. The difference in the ECM landscape suggests distinct aetiologies between AVD of BAV and TAV; warrants different treatments of the patients with BAV and TAV; elucidates the molecular basis of AVD; and implies possible new therapeutic approaches. Our publicly available database (human_avd_ecm.surgsci.uu.se) is a rich source for medical doctors and researchers who are interested in AVD or heart ECM in general. Systematic proteomic analysis of local ECM using the methods described here may facilitate future studies of various tissues and organs in development and disease.


Asunto(s)
Válvula Aórtica , Tenascina , Humanos , Proteómica , Matriz Extracelular , Aorta
6.
Learn Mem ; 30(5-6): 116-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37442624

RESUMEN

Neuropeptides are widely used as neurotransmitters in vertebrates and invertebrates. In vertebrates, a detailed understanding of their functions as transmitters has been hampered by the complexity of the nervous system. The marine mollusk Aplysia, with a simpler nervous system and many large, identified neurons, presents several advantages for addressing this question and has been used to examine the roles of tens of peptides in behavior. To screen for other peptides that might also play roles in behavior, we observed immunoreactivity in individual neurons in the central nervous system of adult Aplysia with antisera raised against the Aplysia peptide FMRFamide and two mammalian peptides that are also found in Aplysia, cholecystokinin (CCK) and neuropeptide Y (NPY), as well as serotonin (5HT). In addition, we observed staining of individual neurons with antisera raised against mammalian somatostatin (SOM) and peptide histidine isoleucine (PHI). However, genomic analysis has shown that these two peptides are not expressed in the Aplysia nervous system, and we have therefore labeled the unknown peptides stained by these two antibodies as XSOM and XPHI There was an area at the anterior end of the cerebral ganglion that had staining by antisera raised against many different transmitters, suggesting that this may be a modulatory region of the nervous system. There was also staining for XSOM and, in some cases, FMRFamide in the bag cell cluster of the abdominal ganglion. In addition, these and other studies have revealed a fairly high degree of colocalization of different neuropeptides in individual neurons, suggesting that the peptides do not just act independently but can also interact in different combinations to produce complex functions. The simple nervous system of Aplysia is advantageous for further testing these ideas.


Asunto(s)
Aplysia , Neuropéptidos , Animales , Aplysia/fisiología , FMRFamida , Sistema Nervioso Central/química , Ganglios/química , Mamíferos
7.
Angew Chem Int Ed Engl ; 63(3): e202316488, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38009610

RESUMEN

Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physicochemical properties from their isotopically natural counterparts. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it. Bacteria showed faster growth, with most proteins exhibiting higher thermal stability, while for recombinant enzymes expressed in depleted media, faster kinetics was discovered. At room temperature, luciferase, thioredoxin and dihydrofolate reductase and Pfu DNA polymerase showed up to a 250 % increase in activity compared to the native counterparts, with an additional ∼50 % increase at 10 °C. Diminished conformational and vibrational entropy is hypothesized to be the cause of the accelerated kinetics. Ultralight enzymes may find an application where extreme reaction rates are required.


Asunto(s)
Escherichia coli , Hidrógeno , Escherichia coli/metabolismo , Hidrógeno/metabolismo , Bacterias , Tetrahidrofolato Deshidrogenasa/genética , Cinética
8.
Hum Mol Genet ; 30(21): 2012-2026, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34169315

RESUMEN

Deoxyguanosine kinase (DGUOK) deficiency causes mtDNA depletion and mitochondrial dysfunction. We reported long survival of DGUOK knockout (Dguok-/-) mice despite low (<5%) mtDNA content in liver tissue. However, the molecular mechanisms enabling the extended survival remain unknown. Using transcriptomics, proteomics and metabolomics followed by in vitro assays, we aimed to identify the molecular pathways involved in the extended survival of the Dguok-/- mice. At the early stage, the serine synthesis and folate cycle were activated but declined later. Increased activity of the mitochondrial citric acid cycle (TCA cycle) and the urea cycle and degradation of branched chain amino acids were hallmarks of the extended lifespan in DGUOK deficiency. Furthermore, the increased synthesis of TCA cycle intermediates was supported by coordination of two pyruvate kinase genes, PKLR and PKM, indicating a central coordinating role of pyruvate kinases to support the long-term survival in mitochondrial dysfunction.


Asunto(s)
Adaptación Biológica , Metabolismo Energético , Mitocondrias/genética , Mitocondrias/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Aminoácidos/metabolismo , Animales , Supervivencia Celular/genética , Ciclo del Ácido Cítrico , Ciclooxigenasa 1 , ADN Mitocondrial/genética , Metabolismo de los Lípidos , Hígado/metabolismo , Proteínas de la Membrana , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Fosforilación Oxidativa
9.
J Virol ; 96(3): e0156821, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817199

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo hemorrhagic fever virus (CCHFV), is on the World Health Organizations' list of prioritized diseases and pathogens. With global distribution, high fatality rate, and no approved vaccine or effective treatment, CCHF constitutes a threat against global health. In the current study, we demonstrate that vaccination with nucleoside-modified mRNA-lipid nanoparticles (mRNA-LNP), encoding for the CCHFV nucleoprotein (N) or glycoproteins (GcGn) protect IFNAR-/- mice against lethal CCHFV infection. In addition, we found that both mRNA-LNP induced strong humoral and cellular immune responses in IFNAR-/- and immunocompetent mice and that neutralizing antibodies are not necessary for protection. When evaluating immune responses induced by immunization including CCHFV Gc and Gn antigens, we found the Gc protein to be more immunogenic compared with the Gn protein. Hepatic injury is prevalent in CCHF and contributes to the severity and mortality of the disease in humans. Thus, to understand the immune response in the liver after infection and the potential effect of the vaccine, we performed a proteomic analysis on liver samples from vaccinated and control mice after CCHFV infection. Similar to observations in humans, vaccination affected the metabolic pathways. In conclusion, this study shows that a CCHFV mRNA-LNP vaccine, based on viral nucleo- or glycoproteins, mediate protection against CCHFV induced disease. Consequently, genetic immunization is an attractive approach to prevent disease caused by CCHFV and we believe we have necessary evidence to bring this vaccine platform to the next step in the development of a vaccine against CCHFV infection. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a zoonotic pathogen causing Crimean-Congo hemorrhagic fever (CCHF), a severe fever disease. CCHFV has a wide distribution and is endemic in several areas around the world. Cases of CCHF are also being reported in new areas, indicating an expansion of the disease, which is of high concern. Dispersion of the disease, high fatality rate, and no approved vaccine makes CCHF a threat to global health. The development of a vaccine is thus of great importance. Here we show 100% protection against lethal CCHFV infection in mice immunized with mRNA-LNP encoding for different CCHFV proteins. The vaccination showed both robust humoral and cellular immunity. mRNA-LNP vaccines combine the ability to induce an effective immune response, the safety of a transient carrier, and the flexibility of genetic vaccines. This and our results from the current study support the development of a mRNA-LNP based vaccine against CCHFV.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Receptor de Interferón alfa y beta/deficiencia , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biología Computacional/métodos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Femenino , Ensayos Analíticos de Alto Rendimiento , Inmunización , Inmunogenicidad Vacunal , Liposomas , Ratones , Ratones Noqueados , Nanopartículas , Proteómica/métodos , Vacunación
10.
J Transl Med ; 21(1): 41, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691026

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent cancers, with over one million new cases per year. Overall, prognosis of CRC largely depends on the disease stage and metastatic status. As precision oncology for patients with CRC continues to improve, this study aimed to integrate genomic, transcriptomic, and proteomic analyses to identify significant differences in expression during CRC progression using a unique set of paired patient samples while considering tumour heterogeneity. METHODS: We analysed fresh-frozen tissue samples prepared under strict cryogenic conditions of matched healthy colon mucosa, colorectal carcinoma, and liver metastasis from the same patients. Somatic mutations of known cancer-related genes were analysed using Illumina's TruSeq Amplicon Cancer Panel; the transcriptome was assessed comprehensively using Clariom D microarrays. The global proteome was evaluated by liquid chromatography-coupled mass spectrometry (LC‒MS/MS) and validated by two-dimensional difference in-gel electrophoresis. Subsequent unsupervised principal component clustering, statistical comparisons, and gene set enrichment analyses were calculated based on differential expression results. RESULTS: Although panomics revealed low RNA and protein expression of CA1, CLCA1, MATN2, AHCYL2, and FCGBP in malignant tissues compared to healthy colon mucosa, no differentially expressed RNA or protein targets were detected between tumour and metastatic tissues. Subsequent intra-patient comparisons revealed highly specific expression differences (e.g., SRSF3, OLFM4, and CEACAM5) associated with patient-specific transcriptomes and proteomes. CONCLUSION: Our research results highlight the importance of inter- and intra-tumour heterogeneity as well as individual, patient-paired evaluations for clinical studies. In addition to changes among groups reflecting CRC progression, we identified significant expression differences between normal colon mucosa, primary tumour, and liver metastasis samples from individuals, which might accelerate implementation of precision oncology in the future.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/genética , Proteómica/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Medicina de Precisión , Neoplasias Hepáticas/genética , ARN , Biomarcadores de Tumor , Factores de Empalme Serina-Arginina
11.
J Periodontal Res ; 58(5): 1061-1081, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37522282

RESUMEN

BACKGROUND AND OBJECTIVE: There is no clear understanding of molecular events occurring in the periodontal microenvironment during clinical disease progression. Our aim was to explore qualitative and quantitative differences in gingival crevicular fluid (GCF) protein profiles from patients diagnosed with periodontitis between non-progressive and progressive periodontal sites. METHODS: Five systemically healthy patients diagnosed with periodontitis were monitored weekly in their progression of the disease and GCF samples from 10 candidate sites were obtained. Two groups of five sites, matched from an equal number of teeth, were selected from the five patients: Progression (PG) and Non-Progression (NP). Global protein identification was performed with high-throughput proteomic approaches and label-free analysis determined their relative abundances. Proteins were identified by Proteome Discoverer v2.4 and searched against human SwissProt protein databases. Enrichment bioinformatic analyses were performed in STRING-DB and ShinyGO environment. RESULTS: 1504 and 1500 proteins were identified in NP and PG respectively. Forty-eight proteins were exclusively identified in PG, while 52 were identified in NP. Moreover, 35 proteins were more abundant in PG and 29 proteins in NP (twofold change, p < .05). The NP group was mainly represented by proteins from "response to biotic stimuli and other organisms," "processes of cell death regulation," "peptidase regulation," "protein ubiquitination," and "ribosomal activity" GO categories. The most represented GO categories of the PG group were "assembly of multiprotein complexes," "catabolic processes," "lipid metabolism," and "binding to hemoglobin and haptoglobin." CONCLUSIONS: There are quantitative and qualitative differences in the proteome of GCF from periodontal sites according to the status of clinical progression of periodontitis. Progressive periodontitis sites are characterized by a protein profile associated with catabolic processes, immune response, and response to cellular stress, while stable periodontitis sites show a protein profile mainly related to wound repair and healing processes, cell death regulation, and chaperone-mediated autophagy. Understanding the etiopathogenic role of these profiles in progressive periodontitis may help to develop new diagnostic and therapeutic approaches.


Asunto(s)
Periodontitis , Proteoma , Humanos , Líquido del Surco Gingival/química , Proteómica , Periodontitis/metabolismo , Progresión de la Enfermedad
12.
J Immunol ; 207(3): 974-984, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282000

RESUMEN

K9CATH is the sole cathelicidin in canines (dogs) and exhibits broad antimicrobial activity against both Gram-positive and Gram-negative bacteria. K9CATH also modulates inflammatory responses and binds to LPS. These activities depend on the secondary structure and a net-positive charge of the peptide. Peptidylarginine deiminases (PAD) convert cationic peptidyl arginine to neutral citrulline. Thus, we hypothesized that citrullination is a biologically relevant modification of the peptide that would reduce the antibacterial and LPS-binding activities of K9CATH. Recombinant PAD2 and PAD4 citrullinated K9CATH to various extents and circular dichroism spectroscopy revealed that both native and citrullinated K9CATH exhibited similar α-helical secondary structures. Notably, citrullination of K9CATH reduced its bactericidal activity, abolished its ability to permeabilize the membrane of Gram-negative bacteria and reduced the hemolytic capacity. Electron microscopy showed that citrullinated K9CATH did not cause any morphological changes of Gram-negative bacteria, whereas the native peptide caused clear alterations of membrane integrity, concordant with a rapid bactericidal effect. Finally, citrullination of K9CATH impaired its capacity to inhibit LPS-mediated release of proinflammatory molecules from mouse and canine macrophages. In conclusion, citrullination attenuates the antibacterial and the LPS-binding properties of K9CATH, demonstrating the importance of a net positive charge for antibacterial lysis of bacteria and LPS-binding effects and suggests that citrullination is a means to regulate cathelicidin activities.


Asunto(s)
Antibacterianos/metabolismo , Antiinflamatorios/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Macrófagos/inmunología , Infecciones por Pasteurella/metabolismo , Pasteurella multocida/fisiología , Desiminasas de la Arginina Proteica/metabolismo , Animales , Antibacterianos/química , Antiinflamatorios/química , Péptidos Catiónicos Antimicrobianos/química , Citrulinación , Perros , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Unión Proteica , Células RAW 264.7 , Catelicidinas
13.
Mol Cell Proteomics ; 20: 100159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34619366

RESUMEN

Viruses hijack host metabolic pathways for their replicative advantage. In this study, using patient-derived multiomics data and in vitro infection assays, we aimed to understand the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 reproduction and their association with disease severity. We used multiomics platforms (targeted and untargeted proteomics and untargeted metabolomics) on patient samples and cell-line models along with immune phenotyping of metabolite transporters in patient blood cells to understand viral-induced metabolic modulations. We also modulated key metabolic pathways that were identified using multiomics data to regulate the viral reproduction in vitro. Coronavirus disease 2019 disease severity was characterized by increased plasma glucose and mannose levels. Immune phenotyping identified altered expression patterns of carbohydrate transporter, glucose transporter 1, in CD8+ T cells, intermediate and nonclassical monocytes, and amino acid transporter, xCT, in classical, intermediate, and nonclassical monocytes. In in vitro lung epithelial cell (Calu-3) infection model, we found that glycolysis and glutaminolysis are essential for virus replication, and blocking these metabolic pathways caused significant reduction in virus production. Taken together, we therefore hypothesized that severe acute respiratory syndrome coronavirus-2 utilizes and rewires pathways governing central carbon metabolism leading to the efflux of toxic metabolites and associated with disease severity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.


Asunto(s)
Proteínas Sanguíneas/metabolismo , COVID-19/etiología , SARS-CoV-2/fisiología , Adulto , Anciano , Sistema de Transporte de Aminoácidos y+/sangre , Aminoácidos/sangre , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , COVID-19/metabolismo , COVID-19/virología , Carbohidratos/sangre , Estudios de Casos y Controles , Transportador de Glucosa de Tipo 1/sangre , Hospitalización , Humanos , Inmunofenotipificación , Manosa/sangre , Lectina de Unión a Manosa/sangre , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Replicación Viral
14.
Anal Chem ; 94(26): 9261-9269, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35731985

RESUMEN

Chemical proteomics studies the effects of drugs upon a cellular proteome. Due to the complexity and diversity of tumors, the response of cancer cells to drugs is also heterogeneous, and thus, proteome analysis at the single-cell level is needed. Here, we demonstrate that single-cell proteomics techniques have become quantitative enough to tackle the drug effects on target proteins, enabling single-cell chemical proteomics (SCCP). Using SCCP, we studied here the time-resolved response of individual adenocarcinoma A549 cells to anticancer drugs methotrexate, camptothecin, and tomudex, revealing the early emergence of cellular subpopulations committed and uncommitted to death. As a novel and useful approach to exploring the heterogeneous response to drugs of cancer cells, SCCP may prove to be a breakthrough application for single-cell proteomics.


Asunto(s)
Antineoplásicos , Neoplasias , Células A549 , Antineoplásicos/farmacología , Camptotecina/farmacología , Humanos , Proteoma/metabolismo , Proteómica
15.
J Proteome Res ; 19(11): 4259-4274, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33095583

RESUMEN

Emerging and re-emerging infectious diseases due to RNA viruses cause major negative consequences for the quality of life, public health, and overall economic development. Most of the RNA viruses causing illnesses in humans are of zoonotic origin. Zoonotic viruses can directly be transferred from animals to humans through adaptation, followed by human-to-human transmission, such as in human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and, more recently, SARS coronavirus 2 (SARS-CoV-2), or they can be transferred through insects or vectors, as in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), Zika virus (ZIKV), and dengue virus (DENV). At the present, there are no vaccines or antiviral compounds against most of these viruses. Because proteins possess a vast array of functions in all known biological systems, proteomics-based strategies can provide important insights into the investigation of disease pathogenesis and the identification of promising antiviral drug targets during an epidemic or pandemic. Mass spectrometry technology has provided the capacity required for the precise identification and the sensitive and high-throughput analysis of proteins on a large scale and has contributed greatly to unravelling key protein-protein interactions, discovering signaling networks, and understanding disease mechanisms. In this Review, we present an account of quantitative proteomics and its application in some prominent recent examples of emerging and re-emerging RNA virus diseases like HIV-1, CCHFV, ZIKV, and DENV, with more detail with respect to coronaviruses (MERS-CoV and SARS-CoV) as well as the recent SARS-CoV-2 pandemic.


Asunto(s)
Enfermedades Transmisibles Emergentes , Proteómica , Infecciones por Virus ARN , Animales , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/terapia , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/diagnóstico , Humanos , Pandemias , Neumonía Viral , Infecciones por Virus ARN/diagnóstico , Infecciones por Virus ARN/terapia , Infecciones por Virus ARN/virología , Virus ARN
16.
Expert Rev Proteomics ; 16(9): 761-772, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31402712

RESUMEN

Introduction: Lung cancer is the leading cause of cancer death worldwide. Proteogenomics, a way to integrate genomics, transcriptomics, and proteomics, have emerged as a way to understand molecular causes in cancer tumorigenesis. This understanding will help identify therapeutic targets that are urgently needed to improve individual patient outcomes. Areas covered: To explore underlying molecular mechanisms of lung cancer subtypes, several efforts have used proteogenomic approaches that integrate next generation sequencing (NGS) and mass spectrometry (MS)-based technologies. Expert opinion: A large-scale, MS-based, proteomic analysis, together with both NGS-based genomic data and clinicopathological information, will facilitate establishing extensive databases for lung cancer subtypes that can be used for further proteogenomic analyzes. Proteogenomic strategies will further be understanding of how major driver mutations affect downstream molecular networks, resulting in lung cancer progression and malignancy, and how therapy-resistant cancers resistant are molecularly structured. These strategies require advanced bioinformatics based on a dynamic theory of network systems, rather than statistics, to accurately identify mutant proteins and their affected key networks.


Asunto(s)
Biología Computacional , Neoplasias Pulmonares/genética , Proteogenómica , Resistencia a Antineoplásicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Espectrometría de Masas , Mutación , Proteómica/métodos
17.
Cancer Metastasis Rev ; 34(2): 227, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26143031

RESUMEN

Erratum to: Cancer and Metastasis Review, DOI 10.1007/s10555-015-9556-2. There are changes in authors' affiliations and a new affiliations for Carol L. Nilsson and Thomas E. Fehniger has been added. The corresponding author also missed out to include Peter Horvatovich as a co-author of this work. The complete list of authors is now listed above.

18.
Cancer Metastasis Rev ; 34(2): 217-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25982285

RESUMEN

The Chromosome 19 Consortium, a part of the Chromosome-Centric Human Proteome Project (C-HPP, http://www.C-HPP.org ), is tasked with the understanding chromosome 19 functions at the gene and protein levels, as well as their roles in lung oncogenesis. Comparative genomic hybridization (CGH) studies revealed chromosome aberration in lung cancer subtypes, including ADC, SCC, LCC, and SCLC. The most common abnormality is 19p loss and 19q gain. Sixty-four aberrant genes identified in previous genomic studies and their encoded protein functions were further validated in the neXtProt database ( http://www.nextprot.org/ ). Among those, the loss of tumor suppressor genes STK11, MUM1, KISS1R (19p13.3), and BRG1 (19p13.13) is associated with lung oncogenesis or remote metastasis. Gene aberrations include translocation t(15, 19) (q13, p13.1) fusion oncogene BRD4-NUT, DNA repair genes (ERCC1, ERCC2, XRCC1), TGFß1 pathway activation genes (TGFB1, LTBP4), Dyrk1B, and potential oncogenesis protector genes such as NFkB pathway inhibition genes (NFKBIB, PPP1R13L) and EGLN2. In conclusion, neXtProt is an effective resource for the validation of gene aberrations identified in genomic studies. It promises to enhance our understanding of lung cancer oncogenesis.


Asunto(s)
Cromosomas Humanos Par 19/genética , Predisposición Genética a la Enfermedad/genética , Neoplasias Pulmonares/genética , Animales , Carcinogénesis/genética , Aberraciones Cromosómicas , Genotipo , Humanos , Fenotipo
19.
Adv Exp Med Biol ; 926: 77-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27686807

RESUMEN

Identification of mutant proteins in biological samples is one of the emerging areas of proteogenomics. Despite the fact that only a limited number of studies have been published up to now, it has the potential to recognize novel disease biomarkers that have unique structure and desirably high specificity. Such properties would identify mutant proteoforms related to diseases as optimal drug targets useful for future therapeutic strategies. While mass spectrometry has demonstrated its outstanding analytical power in proteomics, the most frequently applied bottom-up strategy is not suitable for the detection of mutant proteins if only databases with consensus sequences are searched. It is likely that many unassigned tandem mass spectra of tryptic peptides originate from single amino acid variants (SAAVs). To address this problem, a couple of protein databases have been constructed that include canonical and SAAV sequences, allowing for the observation of mutant proteoforms in mass spectral data for the first time. Since the resulting large search space may compromise the probability of identifications, a novel concept was proposed that included identification as well as verification strategies. Together with transcriptome based approaches, targeted proteomics appears to be a suitable method for the verification of initial identifications in databases and can also provide quantitative insights to expression profiles, which often reflect disease progression. Important applications in the field of mutant proteoform identification have already highlighted novel biomarkers in large-scale investigations.


Asunto(s)
Bases de Datos de Proteínas/estadística & datos numéricos , Proteínas Mutantes/análisis , Mutación , Fragmentos de Péptidos/aislamiento & purificación , Proteogenómica/métodos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Humanos , Proteínas Mutantes/genética , Mapeo Peptídico , Polimorfismo de Nucleótido Simple , Proteogenómica/instrumentación , Proteolisis , Espectrometría de Masas en Tándem , Tripsina/química
20.
J Proteome Res ; 14(2): 778-86, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25399873

RESUMEN

Novel proteoforms with single amino acid variations represent proteins that often have altered biological functions but are less explored in the human proteome. We have developed an approach, searching high quality shotgun proteomic data against an extended protein database, to identify expressed mutant proteoforms in glioma stem cell (GSC) lines. The systematic search of MS/MS spectra using PEAKS 7.0 as the search engine has recognized 17 chromosome 19 proteins in GSCs with altered amino acid sequences. The results were further verified by manual spectral examination, validating 19 proteoforms. One of the novel findings, a mutant form of branched-chain aminotransferase 2 (p.Thr186Arg), was verified at the transcript level and by targeted proteomics in several glioma stem cell lines. The structure of this proteoform was examined by molecular modeling in order to estimate conformational changes due to mutation that might lead to functional modifications potentially linked to glioma. Based on our initial findings, we believe that our approach presented could contribute to construct a more complete map of the human functional proteome.


Asunto(s)
Aminoácidos/química , Neoplasias Encefálicas/química , Cromosomas Humanos Par 19 , Glioma/química , Proteínas de Neoplasias/química , Células Madre Neoplásicas/química , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA