Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806322

RESUMEN

Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Animales , Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Mamíferos/metabolismo , Lípidos de la Membrana/química , Membranas/metabolismo , Fosfolípidos
2.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232575

RESUMEN

In recent years, several studies aimed to investigate the metabolic effects of non-functioning or absent cyclophilin D (CypD), a crucial regulatory component of mitochondrial permeability transition pores. It has been reported that the lack of CypD affects glucose and lipid metabolism. However, the findings are controversial regarding the metabolic pathways involved, and most reports describe the effect of a high-fat diet on metabolism. We performed a lipidomic analysis of plasma and liver samples of CypD-/- and wild-type (WT) mice to reveal the lipid-specific alterations resulting from the absence of CypD. In the CypD-/- mice compared to the WT animals, we found a significant change in 52% and 47% of the measured 225 and 201 lipid species in liver and plasma samples, respectively. The higher total lipid content detected in these tissues was not accompanied by abdominal fat accumulation assessed by nuclear magnetic resonance imaging. We also documented characteristic changes in the lipid composition of the liver and plasma as a result of CypD ablation with the relative increase in polyunsaturated membrane lipid species. In addition, we did not observe remarkable differences in the lipid distribution of hepatocytes using histochemistry, but we found characteristic changes in the hepatocyte ultrastructure in CypD-/- animals using electron microscopy. Our results highlight the possible long-term effects of CypD inhibition as a novel therapeutic consideration for various diseases.


Asunto(s)
Lipidómica , Proteínas de Transporte de Membrana Mitocondrial , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Glucosa , Hígado/metabolismo , Lípidos de la Membrana , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
3.
J Neuroinflammation ; 18(1): 22, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33423680

RESUMEN

BACKGROUND: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. METHODS: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. RESULTS: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. CONCLUSIONS: Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.


Asunto(s)
Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/metabolismo , Etanol/toxicidad , Proteínas de Choque Térmico/biosíntesis , Mediadores de Inflamación/metabolismo , Chaperonas Moleculares/biosíntesis , Animales , Lesiones Encefálicas/genética , Células Cultivadas , Etanol/administración & dosificación , Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética
4.
Int J Hyperthermia ; 38(1): 1650-1659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34808071

RESUMEN

AIMS: Type-2 diabetes mellitus (T2DM) is a common health condition which prevalence increases with age. Besides lifestyle modifications, passive heating could be a promising intervention to improve glycemic control. This study aimed to assess the efficacy of passive heat therapy on glycemic and cardiovascular parameters, and body weight among patients with T2DM. METHODS: A systematic review and meta-analysis were reported according to PRISMA Statement. We conducted a systematic search in three databases (MEDLINE, Embase, CENTRAL) from inception to 19 August 2021. We included interventional studies reporting on T2DM patients treated with heat therapy. The main outcomes were the changes in pre-and post-treatment cardiometabolic parameters (fasting plasma glucose, glycated plasma hemoglobin, and triglyceride). For these continuous variables, weighted mean differences (WMD) with 95% confidence intervals (CIs) were calculated. Study protocol number: CRD42020221500. RESULTS: Five studies were included in the qualitative and quantitative synthesis, respectively. The results showed a not significant difference in the hemoglobin A1c [WMD -0.549%, 95% CI (-1.262, 0.164), p = 0.131], fasting glucose [WMD -0.290 mmol/l, 95% CI (-0.903, 0.324), p = 0.355]. Triglyceride [WMD 0.035 mmol/l, 95% CI (-0.130, 0.200), p = 0.677] levels were comparable regarding the pre-, and post intervention values. CONCLUSION: Passive heating can be beneficial for patients with T2DM since the slight improvement in certain cardiometabolic parameters support that. However, further randomized controlled trials with longer intervention and follow-up periods are needed to confirm the beneficial effect of passive heat therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertermia Inducida , Glucemia , Diabetes Mellitus Tipo 2/terapia , Hemoglobina Glucada/análisis , Calor , Humanos
5.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948069

RESUMEN

Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed Schizosaccharomyces pombe mutants which are unable to synthesize (tps1Δ) or degrade (ntp1Δ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.


Asunto(s)
Glucosiltransferasas/genética , Lipidómica/métodos , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/crecimiento & desarrollo , Trehalosa/metabolismo , Glucosiltransferasas/metabolismo , Calor , Espectrometría de Masas , Mutación , Ácido Oléico/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Triglicéridos/metabolismo
6.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919597

RESUMEN

Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise. Healthy (wild type on a normal diet) and hyperlipidemic, high-fat diet-fed (HFD-fed) apolipoprotein B-100 (APOB-100)-overexpressing mice were trained by treadmill running for 7 months. The serum concentrations of triglyceride and tumor necrosis factor α (TNFα), as well as the level of lipid accumulation in the liver, were significantly higher in HFD-fed APOB-100 males compared to females. However, regular exercise almost completely abolished lipid accumulation in the liver of hyperlipidemic animals. The expression level of the thermogenesis marker, uncoupling protein-1 (Ucp1), was significantly higher in the subcutaneous white adipose tissue of healthy females, as well as in the brown adipose tissue of HFD-fed APOB-100 females, compared to males. Lipidomic analyses revealed that hyperlipidemia essentially remodeled the lipidome of brown adipose tissue, affecting both the membrane and storage lipid fractions, which was partially restored by exercise in both sexes. Our results revealed more severe metabolic disturbances in HFD-fed APOB-100 males compared to females. However, exercise efficiently reduced the body weight, serum triglyceride levels, expression of pro-inflammatory factors, and hepatic lipid accumulation in our model.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatología , Obesidad/metabolismo , Obesidad/fisiopatología , Condicionamiento Físico Animal/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos
7.
Molecules ; 25(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968693

RESUMEN

BGP-15 is a new insulin sensitizer drug candidate, which was developed by Hungarian researchers. In recent years, numerous research groups have studied its beneficial effects. It is effective in the treatment of insulin resistance and it has protective effects in Duchenne muscular dystrophy, diastolic dysfunction, tachycardia, heart failure, and atrial fibrillation, and it can alleviate cardiotoxicity. BGP-15 exhibits chemoprotective properties in different cytostatic therapies, and has also proven to be photoprotective. It can additionally have advantageous effects in mitochondrial-stress-related diseases. Although the precise mechanism of the effect is still unknown to us, we know that the molecule is a PARP inhibitor, chaperone co-inducer, reduces ROS production, and is able to remodel the organization of cholesterol-rich membrane domains. In the following review, our aim was to summarize the investigated molecular mechanisms and pharmacological effects of this potential API. The main objective was to present the wide pharmacological potentials of this chemical agent.


Asunto(s)
Redes Reguladoras de Genes/efectos de los fármacos , Síndrome Metabólico/metabolismo , Oximas/farmacología , Piperidinas/farmacología , Citostáticos/farmacología , Citostáticos/uso terapéutico , Humanos , Resistencia a la Insulina , Síndrome Metabólico/tratamiento farmacológico , Oximas/uso terapéutico , Piperidinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
8.
Biochim Biophys Acta Bioenerg ; 1859(9): 958-974, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29655782

RESUMEN

Our study aimed at finding a mechanistic relationship between the gut microbiome and breast cancer. Breast cancer cells are not in direct contact with these microbes, but disease could be influenced by bacterial metabolites including secondary bile acids that are exclusively synthesized by the microbiome and known to enter the human circulation. In murine and bench experiments, a secondary bile acid, lithocholic acid (LCA) in concentrations corresponding to its tissue reference concentrations (< 1 µM), reduced cancer cell proliferation (by 10-20%) and VEGF production (by 37%), aggressiveness and metastatic potential of primary tumors through inducing mesenchymal-to-epithelial transition, increased antitumor immune response, OXPHOS and the TCA cycle. Part of these effects was due to activation of TGR5 by LCA. Early stage breast cancer patients, versus control women, had reduced serum LCA levels, reduced chenodeoxycholic acid to LCA ratio, and reduced abundance of the baiH (7α/ß-hydroxysteroid dehydroxylase, the key enzyme in LCA generation) gene in fecal DNA, all suggesting reduced microbial generation of LCA in early breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Bacterias/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Detergentes/farmacología , Ácido Litocólico/farmacología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Commun Signal ; 16(1): 51, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157875

RESUMEN

BACKGROUND: The outcome of cancer therapy is greatly defined by the ability of a tumor cell to evade treatment and re-establish its bulk mass after medical interventions. Consequently, there is an urgent need for the characterization of molecules affecting tumor reoccurrence. The phosphatase of regenerating liver 3 (PRL3) protein was recently emerged among the targets that could affect such a phenomenon. METHODS: The expression induction of PRL3 in melanoma cells treated with chemotherapeutic agents was assessed by western blotting. The effect of PRL3 expression on cancer growth was investigated both in vitro and in vivo. The association of PRL3 with the caveolae structures of the plasma membrane was analyzed by detergent free raft purification. The effect of PRL3 expression on the membrane organization was assayed by electron microscopy and by membrane biophysical measurements. Purification of the plasma membrane fraction and co-immunoprecipitation were used to evaluate the altered protein composition of the plasma membrane upon PRL3 expression. RESULTS: Here, we identified PRL3 as a genotoxic stress-induced oncogene whose expression is significantly increased by the presence of classical antitumor therapeutics. Furthermore, we successfully connected the presence of this oncogene with increased tumor growth, which implies that tumor cells can utilize PRL3 effects as a survival strategy. We further demonstrated the molecular mechanism that is connected with the pro-growth action of PRL3, which is closely associated with its localization to the caveolae-type lipid raft compartment of the plasma membrane. In our study, PRL3 was associated with distinct changes in the plasma membrane structure and in the caveolar proteome, such as the dephosphorylation of integrin ß1 at Thr788/Thr789 and the increased partitioning of Rac1 to the plasma membrane. These alterations at the plasma membrane were further associated with the elevation of cyclin D1 in the nucleus. CONCLUSIONS: This study identifies PRL3 as an oncogene upregulated in cancer cells upon exposure to anticancer therapeutics. Furthermore, this work contributes to the existing knowledge on PRL3 function by characterizing its association with the caveolae-like domains of the plasma membrane and their resident proteins.


Asunto(s)
Caveolas/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Melanoma/patología , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Transducción de Señal/efectos de los fármacos , Animales , Carcinogénesis/efectos de los fármacos , Caveolas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL
10.
Int J Mol Sci ; 19(1)2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361800

RESUMEN

Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.


Asunto(s)
Autofagia/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Neuroprotección/genética , Transducción de Señal , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/terapia , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Respuesta de Proteína Desplegada
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 991-1000, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28645851

RESUMEN

Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.


Asunto(s)
Linfocitos B/metabolismo , Diferenciación Celular/fisiología , Microdominios de Membrana/fisiología , Esfingolípidos/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Gangliósidos/metabolismo , Glicoesfingolípidos/metabolismo , Fluidez de la Membrana/fisiología , Microdominios de Membrana/metabolismo , Ratones , Nanotubos , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
12.
Biochim Biophys Acta ; 1851(9): 1271-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26092623

RESUMEN

Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Neuroglía/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Ácido gammalinolénico/farmacología , Ácido 8,11,14-Eicosatrienoico/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Ácido Araquidónico/metabolismo , Línea Celular Tumoral , Ésteres del Colesterol/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Rayos gamma , Humanos , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , Neuroglía/metabolismo , Neuroglía/patología , Neuroglía/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/metabolismo , Ácido gammalinolénico/metabolismo
13.
Pflugers Arch ; 468(8): 1403-18, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27315086

RESUMEN

In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Estudios de Casos y Controles , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Niño , Deshidrocolesteroles/metabolismo , Humanos , Fenotipo
14.
Biochim Biophys Acta ; 1838(6): 1594-618, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24374314

RESUMEN

The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Lípidos de la Membrana/metabolismo , Enfermedades Neurodegenerativas/terapia , Animales , Respuesta al Choque Térmico/fisiología , Humanos , Enfermedades Neurodegenerativas/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(2): 733-8, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187371

RESUMEN

Immunization of mice with a 14-mer peptide TKDNNLLGRFELSG, termed "TKD," comprising amino acids 450-461 (aa(450-461)) in the C terminus of inducible Hsp70, resulted in the generation of an IgG1 mouse mAb cmHsp70.1. The epitope recognized by cmHsp70.1 mAb, which has been confirmed to be located in the TKD sequence by SPOT analysis, is frequently detectable on the cell surface of human and mouse tumors, but not on isogenic cells and normal tissues, and membrane Hsp70 might thus serve as a tumor-specific target structure. As shown for human tumors, Hsp70 is associated with cholesterol-rich microdomains in the plasma membrane of mouse tumors. Herein, we show that the cmHsp70.1 mAb can selectively induce antibody-dependent cellular cytotoxicity (ADCC) of membrane Hsp70(+) mouse tumor cells by unstimulated mouse spleen cells. Tumor killing could be further enhanced by activating the effector cells with TKD and IL-2. Three consecutive injections of the cmHsp70.1 mAb into mice bearing CT26 tumors significantly inhibited tumor growth and enhanced the overall survival. These effects were associated with infiltrations of NK cells, macrophages, and granulocytes. The Hsp70 specificity of the ADCC response was confirmed by preventing the antitumor response in tumor-bearing mice by coinjecting the cognate TKD peptide with the cmHsp70.1 mAb, and by blocking the binding of cmHsp70.1 mAb to CT26 tumor cells using either TKD peptide or the C-terminal substrate-binding domain of Hsp70.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Animales , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Colesterol/química , Granulocitos/citología , Humanos , Interleucina-2/metabolismo , Células Asesinas Naturales/citología , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Unión Proteica , Estructura Terciaria de Proteína
16.
Cancers (Basel) ; 16(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254886

RESUMEN

GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.

17.
Biochim Biophys Acta ; 1821(9): 1256-68, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22178194

RESUMEN

Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.


Asunto(s)
Neoplasias de la Mama/metabolismo , Senescencia Celular , Genes erbB-2 , Glicerofosfolípidos/metabolismo , Metabolismo de los Lípidos , Receptor ErbB-2/biosíntesis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glicerofosfolípidos/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Receptor ErbB-2/genética , Vacuolas/genética , Vacuolas/metabolismo , Vacuolas/patología
18.
Int J Hyperthermia ; 29(5): 491-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23841917

RESUMEN

Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and 'membrane defects' most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo- or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the 'membrane stress' of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies.


Asunto(s)
Hipertermia Inducida , Fluidez de la Membrana , Neoplasias/terapia , Animales , Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Metabolismo de los Lípidos , Neoplasias/metabolismo
19.
Mol Membr Biol ; 29(7): 274-89, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22583025

RESUMEN

The in vitro culture of cells offers an extremely valuable method for probing biochemical questions and many commonly-used protocols are available. For mammalian cells a source of lipid is usually provided in the serum component. In this study we examined the question as to whether the nature of the lipid could become limiting at high cell densities and, therefore, prospectively influence the metabolism and physiology of the cells themselves. When B16 mouse melanoma cells were cultured, we noted a marked decrease in the proportions of n-3 and n-6 polyunsaturated fatty acids (PUFAs) with increasing cell density. This was despite considerable quantities of these PUFAs still remaining in the culture medium and seemed to reflect the preferential uptake of unesterified PUFA rather than other lipid classes from the media. The reduction in B16 total PUFA was reflected in changes in about 70% of the molecular species of membrane phosphoglycerides which were analysed by mass spectrometry. The importance of this finding lies in the need for n-3 and n-6 PUFA in mammalian cells (which cannot synthesize their own). Although the cholesterol content of cells was unchanged the amount of cholesterol enrichment in membrane rafts (as assessed by fluorescence) was severely decreased, simultaneous with a reduced heat shock response following exposure to 42°C. These data emphasize the pivotal role of nutrient supply (in this case for PUFAs) in modifying responses to stress and highlight the need for the careful control of culture conditions when assessing cellular responses in vitro.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Glicerofosfolípidos/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Melanoma/metabolismo , Animales , Línea Celular Tumoral , Medios de Cultivo/farmacología , Ácidos Grasos Insaturados/metabolismo , Calor , Melanoma/patología , Ratones
20.
Cells ; 12(3)2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36766770

RESUMEN

Lipid metabolic disturbances are associated with several diseases, such as type 2 diabetes or malignancy. In the last two decades, high-performance mass spectrometry-based lipidomics has emerged as a valuable tool in various fields of biology. However, the evaluation of macroscopic tissue homogenates leaves often undiscovered the differences arising from micron-scale heterogeneity. Therefore, in this work, we developed a novel laser microdissection-coupled shotgun lipidomic platform, which combines quantitative and broad-range lipidome analysis with reasonable spatial resolution. The multistep approach involves the preparation of successive cryosections from tissue samples, cross-referencing of native and stained images, laser microdissection of regions of interest, in situ lipid extraction, and quantitative shotgun lipidomics. We used mouse liver and kidney as well as a 2D cell culture model to validate the novel workflow in terms of extraction efficiency, reproducibility, and linearity of quantification. We established that the limit of dissectible sample area corresponds to about ten cells while maintaining good lipidome coverage. We demonstrate the performance of the method in recognizing tissue heterogeneity on the example of a mouse hippocampus. By providing topological mapping of lipid metabolism, the novel platform might help to uncover region-specific lipidomic alterations in complex samples, including tumors.


Asunto(s)
Diabetes Mellitus Tipo 2 , Lipidómica , Animales , Ratones , Lípidos/análisis , Microdisección , Reproducibilidad de los Resultados , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA