Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 32(3): 464-73, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18059405

RESUMEN

OBJECTIVE: To investigate the relationship between chemical structure and physiological effect, the efficacy and the molecular mechanisms involved in the reduction of body weight by C18 fatty acids (stearic, elaidic, oleic, linoleic and 2-hydroxyoleic acids (2-OHOA)). DESIGN: Ad libitum fed, lean Wistar Kyoto rats treated orally with up to 600 mg kg(-1) of the fatty acids or vehicle every 12 h for 7 days. Besides, starved rats and rats pairfed to the 2-OHOA-treated group served as additional controls under restricted feeding conditions. MEASUREMENTS: Body weight, food intake, weight of various fat depots, plasma leptin, hypothalamic neuropeptides, uncoupling proteins (UCP) in white (WAT) and brown adipose tissue (BAT) and phosphorylation level of cyclic AMP (cAMP) response element-binding protein (CREB) in WAT. RESULTS: Only treatment with oleic acid and 2-OHOA induced body weight loss (3.3 and 11.4%, respectively) through reduction of adipose fat mass. Food intake in these rats was lower, although hypothalamic neuropeptide and plasma leptin levels indicated a rise in orexigenic status. Rats pairfed to the 2-hydroxyoleic group only lost 6.3% body weight. UCP1 expression and phosphorylation of CREB was drastically increased in WAT, but not BAT of 2-OHOA-treated rats, whereas no UCP1 expression could be detected in WAT of rats treated with oleic acid. CONCLUSION: Both cis-configured monounsaturated C18 fatty acids (oleic acid and 2-OHOA) reduce body weight, but the introduction of a hydroxyl group in position 2 drastically increases loss of adipose tissue mass. The novel molecular mechanism unique to 2-hydroxyoleic, but not oleic acid, implies induction of UCP1 expression in WAT by the cAMP/PKA pathway-dependent transcription factor CREB, most probably as part of a transdifferentiation process accompanied by enhanced energy expenditure.


Asunto(s)
Tejido Adiposo/fisiología , Peso Corporal/fisiología , Ácidos Grasos/administración & dosificación , Tejido Adiposo/metabolismo , Animales , Conducta Alimentaria , Immunoblotting , Leptina/metabolismo , Ácido Linoleico/administración & dosificación , Neuropéptidos/metabolismo , Ácido Oléico/administración & dosificación , Ácidos Oléicos/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácidos Esteáricos/administración & dosificación , Relación Estructura-Actividad
2.
Naunyn Schmiedebergs Arch Pharmacol ; 354(2): 128-35, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8857589

RESUMEN

We investigated the validity of streptolysin O (SLO)-permeabilized Madin-Darbin canine kidney (MDCK) cells which express muscarinic acetylcholine receptors (mAChRs) coupled to pertussis toxin-sensitive guanine nucleotide-binding proteins (G proteins) for the study of the molecular machinery that regulated mAChR internalization and recycling. Exposure of SLO-permeabilized cells to carbachol-reduced cell surface receptor number by up to 40% without changing total receptor number. The kinetics and maximal extent of receptor internalization as well as the potency of carbachol to induce receptor internalization were almost identical in SLO-permeabilized and non-permeabilized cells. Using this semi-intact cell system, we studied the effect of various agents affecting components potentially involved in receptor trafficking. Internalization was prevented by treatment of the SLO-permeabilized MDCK cells with (i) the stable ATP analogues, adenosine 5'-O-(3-thiotriphosphate) and adenylylimidodiphosphate, to block ATP-dependent processes, and (ii) heparin to block G protein-coupled receptor kinases. Inclusion of the stable GTP analogue, guanosine 5'-O-(3-thiotriphosphate), increased the rate but not the extent of receptor internalization. None of the membrane-impermeant agents affected receptor internalization in intact MDCK cells. This model system also allowed recycling of internalized receptors back to the plasma membrane. After removal of the agonist, cell surface receptor number in SLO-permeabilized cells returned to control values within 90 min with the same kinetics as seen in intact cells. Inclusion of guanosine 5'O-(3-thiotriphosphate) shortened the recovery time. These data suggest that both ATP-dependent kinases including G protein-coupled receptor kinases and G proteins participate in receptor internalization and recycling. In summary, the SLO-permeabilized MDCK cell is a feasible model system for the study of mAChR internalization and recycling and allows manipulation of the intracellular milieu with membrane-impermeable macromolecules.


Asunto(s)
Receptores Muscarínicos/metabolismo , Estreptolisinas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Proteínas Bacterianas , Células Cultivadas , Perros , Proteínas de Unión al GTP/fisiología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Riñón/metabolismo , Permeabilidad
3.
J Pharmacol Exp Ther ; 288(1): 36-42, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9862750

RESUMEN

The clathrin-mediated sequestration pathway is used by non-G protein-coupled receptors (e.g., transferrin receptors) and a large number of G protein-coupled receptors, including beta-2 adrenoceptors and various muscarinic acetylcholine receptor (mAChR) subtypes. Recently, the ubiquitously expressed small GTPase RhoA has been implicated as a negative regulator of transferrin receptor internalization. Because mAChRs and other G protein-coupled receptors are able to activate RhoA, we investigated in HEK-293 cells whether RhoA regulates the sequestration of m1 and m2 mAChRs, which internalize via clathrin-coated and nonclathrin-coated vesicles in HEK-293 cells, respectively. Overexpression of wild-type RhoA inhibited agonist-induced sequestration of both m1 and m2 mAChRs by as much as 70%. Inhibition could be reversed by coexpression of Clostridium botulinum C3 transferase, which inactivates RhoA by ADP-ribosylation. Overexpression of C3 transferase alone had no effect on m1 and m2 mAChR sequestration. In addition, overexpression of RhoA inhibited m1 and m2 mAChR transport to the plasma membrane by 60 and 31%, respectively, which was blocked by coexpression of C3 transferase. We conclude that RhoA is not an endogenous regulator of mAChR sequestration, but when overexpressed, strongly inhibits mAChR trafficking (i.e., sequestration and transport to the plasma membrane) in HEK-293 cells.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Muscarínicos/metabolismo , Transporte Biológico , Línea Celular Transformada , Clatrina/metabolismo , Proteínas de Unión al GTP/genética , Humanos , Receptor Muscarínico M1 , Receptor Muscarínico M2 , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores Muscarínicos/efectos de los fármacos , Proteína de Unión al GTP rhoA
4.
J Neurochem ; 74(4): 1721-30, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10737631

RESUMEN

Although M1-M4 muscarinic acetylcholine receptors (mAChRs) in HEK-293 cells internalize on agonist stimulation, only M1, M3, and M4 but not M2 mAChRs recycle to the plasma membrane. To investigate the functional consequences of this phenomenon, we compared desensitization and resensitization of M2 versus M4 mAChRs. Treatment with 1 mM carbachol for 1 h at 37 degrees C reduced numbers of cell surface M2 and M4 mAChRs by 40-50% and M2 and M4 mAChR-mediated inhibition of adenylyl cyclase, intracellular Ca2+ concentration ([Ca2+]i) increases, and phospholipase C (PLC) activation by 60-70%. Receptor-mediated inhibition of adenylyl cyclase and [Ca2+]i increases significantly resensitized within 3 h. However, M4 but not M2 mAChR-mediated PLC activation resensitized. At 16 degrees C, M2 mAChR-mediated [Ca2+]i increases and PLC stimulation desensitized to a similar extent as at 37 degrees C. However, at 16 degrees C, where M2 mAChR internalization is negligible, both M2 mAChR responses resensitized, demonstrating that M2 mAChR resensitization proceeds at the plasma membrane. Examination of M2 mAChR responses following inactivation of cell surface mAChRs by quinuclidinyl benzilate revealed substantial receptor reserve for coupling to [Ca2+]i increases but not to PLC. We conclude that M2 mAChR internalization induces long-lasting PLC desensitization predominantly because receptor loss is not compensated for by receptor recycling or receptor reserve.


Asunto(s)
Receptores Muscarínicos/metabolismo , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/metabolismo , Calcio/metabolismo , Carbacol/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Agonistas Colinérgicos/farmacología , Colforsina/farmacología , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Endocitosis/fisiología , Humanos , Riñón/citología , Cinética , Receptor Muscarínico M2 , Receptor Muscarínico M4 , Receptores de Superficie Celular/metabolismo , Transfección , Tritio
5.
J Biol Chem ; 274(18): 12333-8, 1999 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-10212203

RESUMEN

After activation, agonist-occupied G protein-coupled receptors are phosphorylated by G protein-coupled receptor kinases and bind cytosolic beta-arrestins, which uncouple the receptors from their cognate G proteins. Recent studies on the beta2-adrenergic receptor have demonstrated that beta-arrestin also targets the receptors to clathrin-coated pits for subsequent internalization and activation of mitogen-activated protein kinases. We and others have previously shown that muscarinic acetylcholine receptors (mAChRs) of the m1, m3, and m4 subtype require functional dynamin to sequester into HEK-293 tsA201 cells, whereas m2 mAChRs sequester in a dynamin-independent manner. To investigate the role of beta-arrestin in mAChR sequestration, we determined the effect of overexpressing beta-arrestin-1 and the dominant-negative inhibitor of beta-arrestin-mediated receptor sequestration, beta-arrestin-1 V53D, on mAChR sequestration and function. Sequestration of m1, m3, and m4 mAChRs was suppressed by 60-75% in cells overexpressing beta-arrestin-1 V53D, whereas m2 mAChR sequestration was affected by less than 10%. In addition, overexpression of beta-arrestin-1 V53D as well as dynamin K44A significantly suppressed m1 mAChR-mediated activation of mitogen-activated protein kinases. Finally, we investigated whether mAChRs sequester into clathrin-coated vesicles by overexpressing Hub, a dominant-negative clathrin mutant. Although sequestration of m1, m3, and m4 mAChRs was inhibited by 50-70%, m2 mAChR sequestration was suppressed by less than 10%. We conclude that m1, m3, and m4 mAChRs expressed in HEK-293 tsA201 cells sequester into clathrin-coated vesicles in a beta-arrestin- and dynamin-dependent manner, whereas sequestration of m2 mAChRs in these cells is largely independent of these proteins.


Asunto(s)
Arrestinas/metabolismo , Receptores Muscarínicos/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Clatrina/metabolismo , Endocitosis , Activación Enzimática , Humanos , beta-Arrestina 1 , beta-Arrestinas
6.
J Biol Chem ; 273(20): 12155-60, 1998 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-9575162

RESUMEN

Sustained stimulation of muscarinic acetylcholine receptors (mAChRs) and other G protein-coupled receptors usually leads to a loss of receptor binding sites from the plasma membrane, referred to as receptor sequestration. Receptor sequestration can occur via endocytosis of clathrin-coated vesicles that bud from the plasma membrane into the cell but may also be accomplished by other, as yet ill-defined, mechanisms. Previous work has indicated that the monomeric GTPase dynamin controls the endocytosis of plasma membrane receptors via clathrin-coated vesicles. To investigate whether mAChRs sequester in a receptor subtype-specific manner via dynamin-dependent clathrin-coated vesicles, we tested the effect of overexpressing the dominant-negative dynamin mutant K44A on m1, m2, m3, and m4 mAChR sequestration in HEK-293 cells. The m1, m2, m3, and m4 mAChRs sequestered rapidly in HEK-293 cells following agonist exposure but displayed dissimilar sequestration pathways. Overexpression of dynamin K44A mutant fully blocked m1 and m3 mAChR sequestration, whereas m2 mAChR sequestration was not affected. Also, m4 mAChRs, which like m2 mAChRs preferentially couple to pertussis toxin-sensitive G proteins, sequestered in a completely dynamin-dependent manner. Following agonist removal, sequestered m1 mAChRs fully reappeared on the cell surface, whereas sequestered m2 mAChRs did not. The distinct sequestration of m2 mAChRs was also apparent in COS-7 and Chinese hamster ovary cells. We conclude that the m2 mAChR displays unique subtype-specific sequestration that distinguishes this receptor from the m1, m3, and m4 subtypes. These results are the first to demonstrate that receptor sequestration represents a new type of receptor subtype-specific regulation within the family of mAChRs.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Células CHO , Células COS , Línea Celular , Cricetinae , Dinaminas , GTP Fosfohidrolasas/genética , Humanos , Microtúbulos/metabolismo , Receptores Muscarínicos/clasificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA