Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 24(12): 13665-78, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410381

RESUMEN

We report on an integrated plasmonic ultraviolet (UV) photodetector composed of aluminum Fano-resonant heptamer nanoantennas deposited on a Gallium Nitride (GaN) active layer which is grown on a sapphire substrate to generate significant photocurrent via formation of hot electrons by nanoclusters upon the decay of nonequilibrium plasmons. Using the plasmon hybridization theory and finite-difference time-domain (FDTD) method, it is shown that the generation of hot carriers by metallic clusters illuminated by UV beam leads to a large photocurrent. The induced Fano resonance (FR) minimum across the UV spectrum allows for noticeable enhancement in the absorption of optical power yielding a plasmonic UV photodetector with a high responsivity. It is also shown that varying the thickness of the oxide layer (Al2O3) around the nanodisks (tox) in a heptamer assembly adjusted the generated photocurrent and responsivity. The proposed plasmonic structure opens new horizons for designing and fabricating efficient opto-electronics devices with high gain and responsivity.

2.
ACS Appl Mater Interfaces ; 9(23): 19791-19799, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28534394

RESUMEN

We report for the first time on the growth of a homogeneous radial p-n junction in the ZnO core-shell configuration with a p-doped ZnO nanoshell structure grown around a high-quality unintentionally n-doped ZnO nanorod using sonochemistry. The simultaneous decomposition of phosphorous (P), zinc (Zn), and oxygen (O) from their respective precursors during sonication allows for the successful incorporation of P atoms into the ZnO lattice. The as-formed p-n junction shows a rectifying current-voltage characteristic that is consistent with a p-n junction with a threshold voltage of 1.3 V and an ideality factor of 33. The concentration of doping was estimated to be NA = 6.7 × 1017 cm-3 on the p side from the capacitance-voltage measurements. The fabricated radial p-n junction demonstrated a record optical responsivity of 9.64 A/W and a noise equivalent power of 0.573 pW/√Hz under ultraviolet illumination, which is the highest for ZnO p-n junction devices.

3.
Ultrason Sonochem ; 29: 104-28, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26584990

RESUMEN

Sonochemistry offers a simple route to nanomaterial synthesis with the application of ultrasound. The tiny acoustic bubbles, produced by the propagating sound wave, enclose an incredible facility where matter interact among at energy as high as 13 eV to spark extraordinary chemical reactions. Within each period - formation, growth and collapse of bubbles, lies a coherent phase of material formation. This effective yet highly localized method has facilitated synthesis of various chemical and biological compounds featuring unique morphology and intrinsic property. The benign processing lends to synthesis without any discrimination towards a certain group of material, or the substrates where they are grown. As a result, new and improved applications have evolved to reach out various field of science and technology and helped engineer new and better devices. Along with the facile processing and notes on the essence of sonochemistry, in this comprehensive review, we discuss the individual and mutual effect of important input parameters on the nanomaterial synthesis process as a start to help understand the underlying mechanism. Secondly, an objective discussion of the diversely synthesized nanomaterial follows to divulge the easiness imparted by sonochemistry, which finally blends into the discussion of their applications and outreach.

4.
Nanomaterials (Basel) ; 6(5)2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28335214

RESUMEN

This work proposes a novel geometry field effect transistor with graphene as a channel-graphene field-effect transistor (GFET), having a hybrid contact that consists of an ohmic source/drain and its extended part towards the gate, which is capacitively coupled to the channel. The ohmic contacts are used for direct current (DC) biasing, whereas their capacitive extension reduces access region length and provides the radio frequency (RF) signal a low impedance path. Minimization of the access region length, along with the paralleling of ohmic contact's resistance and resistive part of capacitively coupled contact's impedance, lower the overall source/drain resistance, which results in an increase in current gain cut-off frequency, fT. The DC and high-frequency characteristics of the two chosen conventional baseline GFETs, and their modified versions with proposed hybrid contacts, have been extensively studied, compared, and analyzed using numerical and analytical techniques.

5.
Biosens Bioelectron ; 86: 426-431, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27419908

RESUMEN

Electrochemical monitoring-on-chip (E-MoC)-based approach for rapid assessment of human immunodeficiency virus (HIV)-infection in the presence of cocaine (Coc) and specific drugs namely i.e., tenofovir (Tef), rimcazole (RA) is demonstrated here, for the first time, using electrochemical impedance spectroscopy (EIS). An in-vitro primary human astrocytes (HA) model was developed using a cultureware chip (CC, used for E-MoC) for HIV-infection, Coc exposure and treatment with anti-HIV drug i.e., Tef, and Coc antagonist i.e., RA. The charge transfer resistance (Rct) value of each CC well varies with respect to infection and treatment demonstrated highly responsive sensitivity of developed chip. The results of E-MoC, a proof-of-the concept, suggested that HIV-infection progression due to Coc ingestion and therapeutic effects of highly specific drugs are measurable on the basis of cell electrophysiology. Though, this work needs various molecular biology-based optimizations to promote this technology as an analytical tool for the rapid assessment of HIV-infection in a patient to manage HIV diseases for timely diagnosis. The presented study is based on using CNS cells and efforts are being made to perform this method using peripheral cells such as monocytes derived dendritic cells.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Astrocitos/fisiología , Astrocitos/virología , Conductometría/instrumentación , VIH/efectos de los fármacos , VIH/fisiología , Astrocitos/efectos de los fármacos , Células Cultivadas , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Dispositivos Laboratorio en un Chip , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Matrices Tisulares/instrumentación
6.
Biosens Bioelectron ; 63: 124-130, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25064820

RESUMEN

We report on label free, highly sensitive and selective electrochemical immunosensors based on one-dimensional 1D ZnO nanorods (ZnO-NRs) and two-dimensional 2D ZnO nanoflakes (ZnO-NFs) which were synthesized on Au-coated substrates using simple one step sonochemical approach. Selective detection of cortisol using cyclic voltammetry (CV) is achieved by immobilizing anti-cortisol antibody (Anti-C(ab)) on the ZnO nanostructures (NSs). 1D ZnO-NRs and 2D ZnO-NFs provide unique sensing advantages over bulk materials. While 1D-NSs boast a high surface area to volume ratio, 2D-NSs with large area in polarized (0001) plane and high surface charge density could promote higher Anti-C(ab) loading and thus better sensing performance. Beside large surface area, ZnO-NSs also exhibit higher chemical stability, high catalytic activity, and biocompatibility. TEM studies showed that both ZnO-NSs are single crystalline oriented in (0001) plane. The measured sensing parameters are in the physiological range with a sensitivity of 11.86 µA/M exhibited by ZnO-NRs and 7.74 µA/M by ZnO-NFs with the lowest detection limit of 1 pM which is 100 times better than conventional enzyme-linked immunosorbant immunoassay (ELISA). ZnO-NSs based cortisol immunosensors were tested on human saliva samples and the performance were validated with conventional (ELISA) method which exhibits a remarkable correlation. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat for point-of-care cortisol detection and such developed protocol can be used in personalized health monitoring/diagnostic.


Asunto(s)
Técnicas Biosensibles/métodos , Hidrocortisona/aislamiento & purificación , Nanotubos/química , Óxido de Zinc/química , Oro/química , Humanos , Hidrocortisona/química , Límite de Detección , Nanoestructuras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA