Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Phys Chem A ; 127(13): 2936-2945, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36962071

RESUMEN

Lactic acid, a small α-hydroxyacid, is ubiquitous in both indoor and outdoor environments. Recently, the photochemistry of lactic acid has garnered interest among the abiotic organic chemistry community as it would have been present in abiotic settings and photoactive with the high-energy solar radiation that would have been available in the low oxygen early Earth environment. Additionally, we propose that the photochemistry of lactic acid is relevant to modern Earth during indoor ultraviolet-C (UVC) sterilization procedures as lactic acid is emitted by humans and is thus prevalent in indoor environments where UVC sterilization is increasingly being used. Here, we study the oxygen effect on the gas phase photolysis of lactic acid using Fourier-transform infrared (FTIR) spectroscopy and isotopically labeled oxygen (18O2). We find that the major products of gas phase lactic acid photolysis are CO2, CO, acetaldehyde, and acetic acid. Furthermore, these products are the same with or without added oxygen, but the partial pressures of produced CO2, CO, and acetaldehyde increase with the amount of added oxygen. Notably, the added oxygen is primarily incorporated into produced CO2 and CO, while little or none is incorporated into acetaldehyde. We combine the results presented here with those in the literature to propose a mechanism for the gas phase photolysis of lactic acid and the role of oxygen in this mechanism. Finally, we compare the output of a krypton-chloride excimer lamp (λ = 222 nm), one of the lamps proposed for UVC sterilization procedures, to the absorption of lactic acid. We show that lactic acid would be photoactive during UVC sterilization procedures, and we use the gas phase results presented here and aqueous lactic acid photolysis results previously published to assess potential byproducts from lactic acid reactions during UVC sterilization procedures.

2.
Phys Chem Chem Phys ; 24(11): 6757-6768, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35237773

RESUMEN

Alpha-keto acids are environmentally and biologically relevant species whose chemistry has been shown to be influenced by their local environment. Vibrational spectroscopy provides useful ways to probe the potential inter- and intramolecular interactions available to them in several phases. We measure and compare the IR spectra of 2-oxo-octanoic acid (2OOA) in the gas phase, solid phase, and at the air-water interface. With theoretical support, we assign many of the vibrational modes in each of the spectra. In the gas phase, two types of conformers are identified and distinguished, with the intramolecularly H-bonded form being the dominant type, while the second conformer type identified does not have an intramolecular hydrogen bond. The van der Waals interactions between molecules in solid 2OOA manifest C-H and CO vibrations lower in energy than in the gas phase and we propose an intermolecular hydrogen bonding scheme for the solid phase. At the air-water interface the hydrocarbon tails of 2OOA do interact with each other while the carbonyls appear to interact with water in the subphase, but not with neighboring 2OOA as might be expected of a closely packed surfactant film.


Asunto(s)
Caprilatos , Vibración , Enlace de Hidrógeno , Espectrofotometría Infrarroja/métodos , Agua/química
3.
J Phys Chem A ; 126(39): 6908-6919, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36129815

RESUMEN

The spectroscopy of all-trans-retinoic acid (ATRA), an important molecule of biological origin that can be found in nature, is investigated at the air-water interface using UV-Vis and IR reflection spectroscopy. We employ a UV-Vis reflection absorption spectroscopy (RAS) experiment along with infrared reflection absorption spectroscopy (IR-RAS) to probe ATRA at the air-water interface. We elucidate the factors influencing the spectroscopy of ATRA at the air-water interface and compare its spectra at the water surface with results of bulk samples obtained with conventional spectroscopic methods and computational chemistry. Monolayers of pure ATRA as well as mixed ATRA with stearic-d35 acid were prepared, and the spectroscopy reveals that ATRA forms J-aggregates with itself, causing a significant redshift of its S0 to S1 electronic transition. Pure ATRA monolayers are found to be unstable at the air-water interface and are lost from the surface over time due to the formation of aggregates. The mixture of ATRA and stearic-d35 acid has been shown to stabilize the monolayers and inhibit the loss of surface ATRA. On the basis of our observations, we propose that ATRA could be a significant photosensitizer in natural aqueous environments.


Asunto(s)
Aire , Agua , Fármacos Fotosensibilizantes , Espectrofotometría Infrarroja , Tretinoina , Agua/química
4.
J Phys Chem A ; 126(44): 8280-8294, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36288121

RESUMEN

Organic molecules, including α-hydroxyacids, are ubiquitous in the natural environment. Often found at water-air interfaces, organic molecules can alter the structure of the interface or participate in interfacial chemistry. Despite their prevalence in the environment, the structure and ordering of α-hydroxyacids have not been widely investigated at water-air interfaces, and the impact of the hydrophobic tail length on structure has not been explored. Here, for the first time, we use infrared reflection-absorption spectroscopy to assess the vibrational structure of α-hydroxyacids at a water surface as a function of surface partitioning and surface coverage. We study lactic acid, 2-hydroxyoctanoic acid, and 2-hydroxystearic acid, which have 1 carbon, 6 carbon, and 16 carbon tails, respectively. Vibrational features compared across the set of α-hydroxyacids studied here are used to determine the interaction of the polar headgroup with the water subphase and the ordering of the hydrophobic tail. We find that the carbonyl and α-hydroxyl groups participate in a complex hydrogen-bonding motif at the water-air interface that can be affected by the hydrophobic tail length and places the polar headgroup in or below the water-air interface. Furthermore, molecular ordering increases with the tail length or the surface coverage. The presence of the α-hydroxyl group causes the α-hydroxyacids to maintain a tilted orientation with respect to the surface normal even at high surface coverages. A combination of polar headgroup and hydrophobic tail effects dictates the overall orientation of α-hydroxyacids and can thus affect their ability to participate in chemistry and alter organic coatings on water surfaces.


Asunto(s)
Aire , Agua , Agua/química , Espectrofotometría Infrarroja/métodos , Enlace de Hidrógeno , Ácidos Carboxílicos , Carbono/química
5.
Phys Chem Chem Phys ; 23(8): 4555-4568, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33605952

RESUMEN

We study the primary photolysis dynamics of aqueous lactate induced by photo-excitation at λ = 200 nm. Our calculations indicate that both decarboxylation and dehydroxylation are energetically possible, but decarboxylation is favoured dynamically. UV pump - IR probe transient absorption spectroscopy shows that the photolysis is dominated by decarboxylation, whereas dehydroxylation is not observed. Analysis of the transient IR spectrum suggests that photo-dissociation of lactate primarily produces CO2 and CH3CHOH- through the lowest singlet excited state of lactate, which has a lifetime of τ = 11 ps. UV pump - VIS probe transient absorption spectroscopy of electrons from the dissociating lactate anion indicates that the anionic electron from the CO2˙- fragment is transferred to the CH3CHOH˙ counter radical during the decarboxylation process, and CO2˙- is consequently only observed as a minor photo-product. The photo-dissociation quantum yield after the full decay of the excited state is Φ(100ps) = 38 ± 5%.

6.
J Phys Chem A ; 125(23): 4929-4942, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-33979519

RESUMEN

The asymmetric water-air interface provides a dynamic aqueous environment with properties that are often very different than bulk aqueous or gaseous phases and promotes reactions that are thermodynamically, kinetically, or otherwise unfavorable in bulk water. Prebiotic chemistry faces a key challenge: water is necessary for life yet reduces the efficiency of many biomolecular synthesis reactions. This perspective considers water-air interfaces as auspicious reaction environments for abiotic synthesis. We discuss recent evidence that (1) water-air interfaces promote condensation reactions including peptide synthesis, phosphorylation, and oligomerization; (2) photochemistry at water-air interfaces may have been a significant source of prebiotic molecular complexity, given the lack of oxygen and increased availability of near-ultraviolet radiation on early Earth; and (3) water-air interfaces can promote spontaneous reduction and oxidation reactions, potentially providing protometabolic pathways. Life likely began within a relatively short time frame, and water-air interfaces offer promising environments for simultaneous and efficient biomolecule production.

7.
J Phys Chem A ; 125(11): 2232-2242, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33705144

RESUMEN

Gas-phase reactions between pyruvic acid (PA) and HO2 radicals were examined using ab initio quantum chemistry and transition state theory. The rate coefficients were determined over a temperature range of 200-400 K including tunneling contributions. Six potential reaction pathways were identified. The two hydrogen abstraction reactions yielding the H2O2 product were found to have high barriers. The HO2 radical was also found to have a catalytic effect on the intramolecular hydrogen transfer reactions occurring by three distinct routes. These hydrogen-shift reactions are very interesting mechanistically although they are highly endothermic. The only reaction that contributes significantly to the consumption of PA is a multistep pathway involving a peroxy-radical intermediate, PA + HO2 → CH3COOH + OH + CO2. This exothermic process has potential atmospheric relevance because it produces an OH radical as a product. Atmospheric models currently have difficulty predicting accurate OH concentrations for certain atmospheric conditions, such as environments free of NOx and the nocturnal boundary layer. Reactions of this sort, although not necessary with PA, may account for a portion of this deficit. The present study helps settle the issue of the relative roles of reaction and photolysis in consumption of PA in the troposphere.

8.
J Phys Chem A ; 125(1): 218-229, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33377780

RESUMEN

Lactic acid, a relevant molecule in biology and the environment, is an α-hydroxy acid with a high propensity to form hydrogen bonds, both internally and to other hydrogen-bond-accepting molecules. This work includes the novel recording of infrared spectra of gas-phase lactic acid using Fourier transform infrared spectroscopy, and the vibrational absorption features of lactic acid are assigned with the aid of computationally simulated vibrational spectra with anharmonic corrections. Theoretical chemistry methods are used to relate intramolecular hydrogen-bond strengths to the relative stability of lactic acid conformers. The formation of hydrogen-bonded lactic acid dimers and 1:1 water complexes is investigated by simulated vibrational spectra and calculated thermodynamic parameters for the lactic acid monomer and dimer and its water complex in the gas phase. The results of this study are discussed in the context of environmental chemistry with an emphasis on indoor environments.

9.
J Phys Chem A ; 125(4): 1036-1049, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33475373

RESUMEN

Interfacial regions are unique chemical reaction environments that can promote chemistry not found elsewhere. The air-water interface is ubiquitous in the natural environment in the form of ocean surfaces and aqueous atmospheric aerosols. Here we investigate the chemistry and photochemistry of pyruvic acid (PA), a common environmental species, at the air-water interface and compare it to its aqueous bulk chemistry using two different experimental setups: (1) a Langmuir-Blodgett trough, which models natural water surfaces and provides a direct comparison between the two reaction environments, and (2) an atmospheric simulation chamber (CESAM) to monitor the chemical processing of nebulized aqueous PA droplets. The results show that surface chemistry leads to substantial oligomer formation. The sequence begins with the condensation of lactic acid (LA), formed at the surface, with itself and with pyruvic acid, and LA + LA - H2O and LA + PA - H2O are prominent among the products in addition to a series of higher-molecular-weight oligomers of mixed units of PA and LA. In addition, we see zymonic acid at the surface. Actinic radiation enhances the production of the oligomers and produces additional surface-active molecules known from the established aqueous photochemical mechanisms. The presence and formation of complex organic molecules at the air-water interface from a simple precursor like PA in the natural environment is relevant to contemporary atmospheric science and is important in the context of prebiotic chemistry, where abiotic production of complex molecules is necessary for abiogenesis.

10.
J Phys Chem A ; 124(5): 790-800, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31913620

RESUMEN

The gas-phase reaction of pyruvic acid (PA) with the OH radical is studied theoretically using accurate quantum chemistry and transition state theory. Two chemically distinct H-atom abstraction reactions and two distinct OH addition reactions have been identified. The rate coefficients for these four processes were calculated. Quantum tunneling was included in each rate using the small curvature tunneling method. The influence of the conformational structure of PA was found to be particularly intriguing. While the trans-cis structure was found to dominantly react by H-atom abstraction from the methyl site, the trans-trans conformer was found to react mostly through H-atom abstraction from the acid site. A general formalism was developed to model the kinetics of the reactions that involve multiple conformers, interconverting prereactive complexes, and multiple transition states. Comparison of the results obtained with available experimental rate observations reveals agreement with the trans-trans conformer of PA but disagreement with the results obtained for a full statistical mixture of reagents. The role of these reactions in the atmospheric processing of PA is discussed.

11.
J Phys Chem A ; 124(7): 1240-1252, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31976674

RESUMEN

The conformer-specific reactivity of gas-phase pyruvic acid following the S1(nπ*) ← S0 excitation at λmax = 350 nm (290-380 nm) and the effect of water are investigated for the two lowest energy conformers. Conformer-specific gas-phase pyruvic acid photolysis rate constants and their respective populations are measured by monitoring their distinct vibrational OH-stretching frequencies. The geometry, relative energies, fundamental vibrational frequencies, and electronic transitions of the pyruvic acid conformers and their monohydrated complexes are calculated with density functional theory and ab initio methods. Results from experiment and theory show that the more stable conformer with an intramolecular hydrogen bond dominates the gas-phase photolysis of pyruvic acid. Water greatly affects the gas-phase pyruvic acid conformer population and photochemistry through hydrogen bonding interactions. The addition of water decreases the gas-phase relative population of the more stable conformer and decreases the molecule's gas-phase photolysis rate constants. The theoretical results show that even a single water molecule interrupts the intramolecular hydrogen bond, which is essential for the efficient photodissociation of gas-phase pyruvic acid. Results of this study suggest that the aqueous-phase photochemistry of pyruvic acid proceeds through hydrogen-bonded conformers lacking an intramolecular hydrogen bond.

13.
J Phys Chem A ; 123(35): 7661-7671, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31381344

RESUMEN

The surface chemistry and photochemistry of gas-phase pyruvic acid (CH3COCOOH) on two oxides, Al2O3 and TiO2, have been investigated using transmission Fourier transform infrared spectroscopy and mass spectrometry. At 298 K, the carboxylic acid group within pyruvic acid is found to react with surface hydroxyl groups (M-OH, M = Al, Ti) to yield pyruvate as a predominant adsorbed organic species. Upon broad-band UV irradiation (λ > 280 nm), there is a loss of adsorbed pyruvate with the concomitant formation of new products. The photochemical loss of pyruvate is higher on TiO2 than on Al2O3 indicating that the photochemistry is enhanced on the surface of a semiconductor oxide, TiO2, compared with an insulator oxide, Al2O3. Analysis of products extracted from the surface with mass spectrometry shows the formation of several new compounds. This includes zymonic acid, which is found to be present under both dark and light conditions, and other higher-molar-mass oligomeric species such as parapyruvic acid, acetolactic acid, and 2,4-dihydroxy-2-methyl-5-oxohexanoic acid that form only under irradiation. Although this study shows that there are some parallels between the aqueous-phase photochemistry of pyruvic acid and the photochemistry of adsorbed pyruvic acid in terms of the products that form, there are also distinct differences, with several other new photoproducts observed on these oxide surfaces, including lactic acid dimers and trimers as well as significant amounts of even larger oligomeric species not seen in the aqueous phase. Because of the role of pyruvic acid, the simplest of the α-keto acids, in the atmosphere and in metabolic pathways, these results have implications for the chemistry that occurs in both indoor and outdoor environments and under prebiotic Earth conditions. Overall, this study provides insights into the surface chemistry and photochemistry of pyruvic acid on different oxides (Al2O3 and TiO2).

14.
J Phys Chem A ; 123(5): 983-991, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30632753

RESUMEN

The adsorption of gas-phase pyruvic acid (CH3COCOOH) on hydroxylated silica particles has been investigated at 296 K using transmission Fourier transform infrared (FTIR) spectroscopy and theoretical simulations. Under dry conditions (<1% relative humidity, RH), both the trans-cis (Tc) and trans-trans (Tt) pyruvic acid conformers are observed on the surface as well as the (hydrogen bonded) pyruvic acid dimer. The detailed surface interactions were further understood through ab initio molecular dynamics simulations. Under higher relative humidity conditions (above 10% RH), adsorbed water competes for surface adsorption sites. Adsorbed water is also observed to change the relative populations of the different adsorbed pyruvic acid configurations. Overall, this study provides valuable insights into the interaction of pyruvic acid with hydroxylated silica surfaces on the molecular level from both experimental and theoretical analyses. Furthermore, these results highlight the importance of the environment (relative humidity and coadsorbed water) in the adsorption, partitioning, and configurations of pyruvic acid at the surface.

15.
J Phys Chem A ; 122(18): 4465-4469, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29665331

RESUMEN

The reaction of electronically excited triplet state sulfur dioxide (3SO2) with water was investigated both theoretically and experimentally. The quantum chemical calculations find that the reaction leads to the formation of hydroxyl radical (OH) and hydroxysulfinyl radical (HOSO) via a low energy barrier pathway. Experimentally the formation of OH was monitored via its reaction with methane, which itself is relatively unreactive with 3SO2, making it a suitable probe of OH production from the reaction of 3SO2 and water. This reaction has implications for the formation of OH in environments that are assumed to be depleted in OH, such as volcanic plumes. This reaction also provides a mechanism for the formation of OH in planetary atmospheres with little or no oxygen (O2) or ozone (O3) present.

16.
J Phys Chem A ; 122(39): 7782-7789, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30189135

RESUMEN

We studied the reaction of electronically excited sulfur dioxide in the triplet state (3SO2) with a variety of alkane species, including propane, n-butane, isobutane, n-pentane, n-hexane, cyclohexane, n-octane, and n-nonane. Reaction rate constants for the photoinitiated reaction of SO2 with all of these species were determined and found to be in the range from 3.7 × 10-13 to 5.1 × 10-12 cm3molecule-1s-1. We found that reaction proceeds via a hydrogen abstraction to form HOSO• and organic radical (R•) species and that reactivity is correlated with the energy required to break a C-H bond and the length of the alkane chain. Abstraction rates were found to be fastest for reaction with hydrogen on a tertiary carbon. Similarly, abstraction from secondary carbons is found to be faster than from primary carbons. The reactivity of 3SO2 with alkanes increases with chain length as additional secondary carbons are added.

17.
J Am Chem Soc ; 139(41): 14388-14391, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28965406

RESUMEN

Biological membranes are a crucial aspect of living systems, controlling the organization and distribution of different chemical components. Control of membrane permeability is especially important for processes such as electron transport in metabolism and signal propagation in nerve cells. In this work, we show that the amino acid phenylalanine produces increased membrane permeability, which is likely responsible for some of the deleterious symptoms associated with high biological phenylalanine concentrations that occur with the genetic disorder phenylketonuria.


Asunto(s)
Permeabilidad de la Membrana Celular , Fenilalanina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Humanos , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Ribosa/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
18.
J Am Chem Soc ; 139(20): 6946-6959, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28481114

RESUMEN

The aqueous phase photochemistry of a series of amphiphilic α-keto acids with differing linear alkyl chain lengths was investigated, demonstrating the ability of sunlight-initiated reactions to build molecular complexity under environmentally relevant conditions. We show that the photochemical reaction mechanisms for α-keto acids in aqueous solution are robust and generalizable across alkyl chain lengths. The organic radicals generated during photolysis are indiscriminate, leading to a large mixture of photoproducts that are observed using high-resolution electrospray ionization mass spectrometry, but these products are identifiable following literature photochemical mechanisms. The alkyl oxoacids under study here can undergo a Norrish Type II reaction to generate pyruvic acid, increasing the diversity of observed photoproducts. The major products of this photochemistry are covalently bonded dimers and trimers of the starting oxoacids, many of which are multi-tailed lipids. The properties of these oligomers are discussed, including their spontaneous self-assembly into aggregates.


Asunto(s)
Cetoácidos/química , Tensoactivos/síntesis química , Estructura Molecular , Procesos Fotoquímicos , Tensoactivos/química , Agua/química
19.
J Phys Chem A ; 121(22): 4272-4282, 2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28510434

RESUMEN

The aqueous phase photochemistry of pyruvic acid, an important oxidation product of isoprene, is known to generate larger oligomeric species that may contribute to the formation of secondary organic aerosol in the atmosphere. Using high resolution negative mode electrospray ionization mass spectrometry, the aqueous photochemistry of dilute solutions of pyruvic acid (10, 1, and 0.5 mM) under anaerobic conditions was investigated. Even at the lowest concentration, covalently bonded dimers and trimers of pyruvic acid were observed as photochemical products. We calculate that it is energetically possible to photochemically generate parapyruvic acid, a dimer of pyruvic acid that is known to form via dark oligomerization processes. Subsequent photochemical reactions of parapyruvic acid with pyruvic acid form larger oligomeric products, such as 2,4-dihydroxy-2-methyl-5-oxohexanoic acid. A robust and relatively simple photochemical mechanism is discussed that explains both the conditional dependence and wide array of products that are observed.

20.
J Phys Chem A ; 121(44): 8368-8379, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29032688

RESUMEN

α-Keto acids are important, atmospherically relevant species, and their photochemistry has been considered in the formation and processing of aerosols. Despite their atmospheric relevance, the photochemistry of these species has primarily been studied under extremely low pH conditions. Using a variety of analytical techniques, we characterize the extent of hydration and deprotonation for solutions of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, as a function of pH. We find that changes in the initial solution composition govern the accessibility of different photochemical pathways, resulting in slowed photolysis under high pH conditions and a shift in photoproducts that can be predicted mechanistically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA