Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 25(2): 305-310, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32052177

RESUMEN

Arylamines are known to form covalent-DNA adducts upon metabolic activation. These covalent adducts adopt different conformational attributes, viz., major groove (B), stacked (S), and minor groove (W), and lead to different types of mutations. The conformation depends on the flanking and next flanking bases at the 3' position of the adduct. Early detection of these conformations by simple probes is an ideal and challenging task. Here, we have reported two Ir(III)-based cyclometalated complexes, viz., [Ir(ppy)2(imiphen)]+ (1) (ppy: 2-phenylpyridine; imiphen: 2-(1H-imidazol-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)2(furphen)]+ (2) (furphen: 2-(furan-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its interaction with N-acetyl-2-aminofluorene-dG (AAF-dG). The sequences used in this work are NarI sequence (-CG1G2CG3CX-) in which Gs are modified with AAF and X is either C or T. Luminescence studies reveal that the Ir(III) complexes bind to AAF-dG adduct with high specificity toward G1 and G3 compared to G2 and unmodified control. The selectivity also depends on the next flanking base as cytosine favors G3AAF, while thymine favors G1AAF in complex 1 and vice versa for complex 2. The quenching studies confirm that Ir(III) complexes bind with AAF-dG sequences through the minor groove. The outcome of this work reveals that the switch-on effect by the complexes can be utilized for determining the conformational heterogeneity of the adduct and also for similar covalent-DNA adducts.


Asunto(s)
Aminas/química , Complejos de Coordinación/química , Aductos de ADN/química , Iridio/química , Complejos de Coordinación/síntesis química , Conformación Molecular
2.
Chem Res Toxicol ; 33(3): 800-805, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32039589

RESUMEN

Arylamine modification of guanine base at the G3 position in the NarI sequence (-G1G2CG3CC-) causes a frameshift mutation. Polymerase and 19F NMR studies have shown that the next flanking base at the 3' position to the G3 adduct modulates the mutational outcome because of its different conformations. Here, we have studied the interaction of the 16-mer NarI sequence (5'-CTCTCG1G2CG3CXATCAC-3') (G3 = N-acetyl-2-aminofluorene (AAF)-dG and X is either C or T) with [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline and dppz = dipyrido[3,2-a:2',3'-c]phenazine). Interaction studies between isomers of Ru(II) and two oligonucleotide models, viz., (a) full duplex, and (b) slipped mutagenic intermediate (SMI), have been carried out. Luminescence studies reveal that the sensitivity of Ru(II) with an adduct increases 2- to 3-fold compared to that of control in full duplex. In SMI, the sensitivity of Ru(II) varies with the next flanking base and in the order of -GAAFCC > -GAAFCT. Microscale thermophoretic data reveal that in full duplex Λ-Ru binds to -GAAFCT- by 13- and 4-fold stronger than its control and -GAAFCC-, respectively. In SMI, Δ-Ru binds to -GAAFCC- (41% stacked (S) conformer) by 3-fold while -GAAFCT- (86% major groove (B) conformer) weakens the binding of Λ-Ru by 250-fold compared to the control. The results presented here reveal that the binding of Ru(II) not only depends on conformations of the AAF-dG adduct but also is isomer-centric and might be helpful in determining the conformational heterogeneity of other covalent aryl/heterocyclic amine-DNA adducts.


Asunto(s)
Aminas/química , Aductos de ADN/química , Mutación del Sistema de Lectura , Compuestos Organometálicos/química , Aductos de ADN/genética , Modelos Moleculares , Conformación Molecular
3.
Bioorg Med Chem ; 28(17): 115634, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773089

RESUMEN

Single domain antibody fragments (sdAbs) exhibit a rapid tumor uptake and fast blood clearance amenable for labeling with 18F (t½â€¯= 110 min) but suffer from high kidney accumulation. Previously, we developed a method for 18F-labeling of sdAbs via trans-cyclooctene (TCO)-tetrazine (Tz) inverse electron demand Diel's Alder cycloaddition reaction (IEDDAR) that incorporated a renal brush border enzyme (RBBE)-cleavable linker. Although >15 fold reduction in kidney activity levels was achieved, tumor uptake was compromised. Here we investigate whether replacing the [18F]AlF-NOTA moiety with [18F]fluoronicotinyl would rectify this problem. Anti-HER2 sdAb 5F7 was first derivatized with a TCO-containing agent that included the RBBE-cleavable linker GlyLys (GK) and a PEG chain, and then subjected to IEDDAR with 6-[18F]fluoronicotinyl-PEG4-methyltetrazine to provide [18F]FN-PEG4-Tz-TCO-GK-PEG4-5F7 ([18F]FN-GK-5F7). For comparisons, a control lacking GK linker and 5F7 labeled using residualizing N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB) also were synthesized. Radiochemical purity, affinity (KD) and immunoreactive fraction of [18F]FN-GK-5F7 were 99%, 5.4 ±â€¯0.7 nM and 72.5 ±â€¯4.3%, respectively. Tumor uptake of [18F]FN-GK-5F7 in athymic mice bearing subcutaneous SKOV3 xenografts (3.7 ±â€¯1.2% ID/g and 3.4 ±â€¯1.0% ID/g at 1 h and 3 h, respectively) was 2- to 3-fold lower than for co-injected iso-[125I]SGMIB-5F7 (6.9 ±â€¯1.9 %ID/g and 8.7 ±â€¯3.0 %ID/g). However, due to its 6-fold lower kidney activity levels, tumor-to-kidney ratios for [18F]FN-GK-5F7 were 3-4 times higher than those for co-injected iso-[125I]SGMIB-5F7 as well as those observed for the 18F conjugate lacking the RBBE-cleavable linker. Micro-PET/CT imaging of [18F]FN-GK-5F7 in mice with SKOV-3 subcutaneous xenografts clearly delineated tumor as early as 1 h with minimal activity in the kidneys; however, there was considerable activity in gallbladder and intestines. Although the tumor uptake of [18F]FN-GK-5F7 was unexpectedly disappointing, incorporating an alternative RBBE-cleavable linker into this labeling strategy may ameliorate this problem.


Asunto(s)
Ciclooctanos/química , Radiofármacos/química , Anticuerpos de Dominio Único/química , Animales , Línea Celular Tumoral , Reacción de Cicloadición , Femenino , Radioisótopos de Flúor/química , Humanos , Radioisótopos de Yodo/química , Ratones , Ratones Desnudos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Anticuerpos de Dominio Único/inmunología , Distribución Tisular , Trasplante Heterólogo
4.
Mol Pharm ; 16(1): 214-226, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30427188

RESUMEN

ImmunoPET agents are being investigated to assess the status of epidermal growth factor receptor 2 (HER2) in breast cancer patients with the goal of selecting those likely to benefit from HER2-targeted therapies and monitoring their progress after these treatments. We have been exploring the use of single domain antibody fragments (sdAbs) labeled with 18F using residualizing prosthetic agents for this purpose. In this study, we have labeled two sdAbs that bind to different domains on the HER2 receptor, 2Rs15d and 5F7, using 2,3,5,6-tetrafluorophenyl 6-[18F]fluoronicotinate ([18F]TFPFN) and evaluated their HER2 targeting properties in vitro and in vivo. The overall decay-corrected radiochemical yield for the synthesis of [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was 5.7 ± 3.6 and 4.0 ± 2.0%, respectively. The radiochemical purity of labeled sdAbs was >95%, immunoreactive fractions were about 60%, and affinity was in the low nanomolar range. Intracellularly trapped activity from [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 in HER2-expressing SKOV-3 ovarian and BT474M1 breast carcinoma cells were similar to the sdAbs labeled using the previously validated radioiodination residualizing prosthetic agents N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) and N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate ( iso-[125I]SGMIB). Intracellular activity was about 2-fold higher for radiolabeled 5F7 compared with 2Rs15d for both 18F and 125I. While tumor uptake of both [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was comparable to those for the coadministered 125I-labeled sdAb, renal uptake of the 18F-labeled sdAbs was substantially lower. In microPET images, the tumor was clearly delineated in SKOV-3 and BT474 xenograft-bearing athymic mice with low levels of background activity in normal tissues, except the bladder. These results indicate that the [18F]TFPFN prosthetic group could be a valuable reagent for developing sdAb-based immunoPET imaging agents.


Asunto(s)
Benzoatos/química , Neoplasias de la Mama/diagnóstico por imagen , Radioisótopos de Flúor/química , Riñón/metabolismo , Radiofármacos/química , Receptor ErbB-2/metabolismo , Anticuerpos de Dominio Único/química , Succinimidas/química , Animales , Apoptosis , Western Blotting , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Citocromos c/metabolismo , Fragmentación del ADN , Femenino , Citometría de Flujo , Humanos , Radioisótopos de Yodo/química , Riñón/diagnóstico por imagen , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nanotechnology ; 30(27): 275101, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30856613

RESUMEN

Despite decades of efforts, non-invasive sensitive detection of small malignant brain tumors still remains challenging. Here we report a dual-modality 124I-labeled gold nanostar (124I-GNS) probe for sensitive brain tumor imaging with positron emission tomography (PET) and subcellular tracking with two-photon photoluminescence (TPL) and electron microscopy (EM). Experiment results showed that the developed nanoprobe has potential to reach sub-millimeter intracranial brain tumor detection using PET scan, which is superior to any currently available non-invasive imaging modality. Microscopic examination using TPL and EM further confirmed that GNS nanoparticles permeated the brain tumor leaky vasculature and accumulated inside brain tumor cells following systemic administration. Selective brain tumor targeting by enhanced permeability and retention effect and ultrasensitive imaging render 124I-GNS nanoprobe promise for future brain tumor-related preclinical and translational applications.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Diagnóstico por Imagen , Nanopartículas del Metal/química , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/ultraestructura , Fluorodesoxiglucosa F18/química , Oro/química , Oro/toxicidad , Células HEK293 , Humanos , Radioisótopos de Yodo/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Ratones , Imagen Óptica , Especificidad de Órganos , Tomografía Computarizada por Tomografía de Emisión de Positrones
6.
Molecules ; 24(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671554

RESUMEN

Trastuzumab is an antibody used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancers. Since trastuzumab is an internalizing antibody, two factors could play an important role in achieving high uptake and prolonged retention of radioactivity in HER2-positive tumors after radioiodination-residualizing capacity after receptor-mediated internalization and susceptibility to dehalogenation. To evaluate the contribution of these two factors, trastuzumab was radiolabeled using the residualizing reagent N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB) and the nonresidualizing reagent N-succinimidyl-3-[*I]iodobenzoate ([*I]SIB), both of which are highly dehalogenation-resistant. Paired-label uptake and intracellular retention of [125I]SGMIB-trastuzumab and [131I]SIB-trastuzumab was compared on HER2-expressing BT474 human breast carcinoma cells. Tumor uptake and normal tissue distribution characteristics for the two labeled conjugates were assessed in mice bearing BT474M1 xenografts. The internalization and intracellular retention of initially-bound radioactivity in BT474 cells was similar for the two labeled conjugates up to 4 h, but were significantly higher for [125I]SGMIB-trastuzumab at 6 and 24 h. Similarly, [*I]SGMIB labeling resulted in significantly higher uptake and retention of radioactivity in BT474M1 xenografts at all studied time points. Moreover, tumor-to-tissue ratios for [125I]SGMIB-trastuzumab were consistently higher than those for [131I]SIB-trastuzumab starting at 12 h postinjection. Thus, optimal targeting of HER2-positive breast cancers with a radioiodinated trastuzumab conjugate requires an acylation agent that imparts residualizing capacity in addition to high stability towards dehalogenation in vivo.


Asunto(s)
Benzoatos/química , Guanidina/análogos & derivados , Halogenación , Radioisótopos de Yodo/química , Trastuzumab/uso terapéutico , Acilación , Animales , Línea Celular Tumoral , Guanidina/química , Humanos , Ratones , Control de Calidad , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Bioconjug Chem ; 29(12): 4090-4103, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30384599

RESUMEN

Single domain antibody fragments (sdAbs) labeled with 18F have shown promise for assessing the status of oncological targets such as the human epidermal growth factor receptor 2 (HER2) by positron emission tomography (PET). Earlier, we evaluated two residualizing prosthetic agents for 18F-labeling of anti-HER2 sdAbs; however, these methods resulted in poor labeling yields and high uptake of 18F activity in the kidneys. To potentially mitigate these limitations, we have now developed an 18F labeling method that utilizes the trans-cyclooctene (TCO)-tetrazine (Tz)-based inverse-electron demand Diels-Alder reaction (IEDDAR) in tandem with a renal brush border enzyme-cleavable glycine-lysine (GK) linker in the prosthetic moiety. The HER2-targeted sdAb 2Rs15d was derivatized with TCO-GK-PEG4-NHS or TCO-PEG4-NHS, which lacks the cleavable linker. As an additional control, the non HER2-specific sdAb R3B23 was derivatized with TCO-GK-PEG4-NHS. The resultant sdAb conjugates were labeled with 18F by IEDDAR using [18F]AlF-NOTA-PEG4-methyltetrazine. As a positive control, the 2Rs15d sdAb was radioiodinated using the well-characterized residualizing prosthetic agent, N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB). Synthesis of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was achieved with an overall radiochemical yield (RCY) of 17.8 ± 1.5% ( n = 5) in 90 min, a significant improvement over prior methods (3-4% in 2-3 h). In vitro assays indicated that [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d bound with high affinity and immunoreactivity to HER2. In normal mice, when normalized to coinjected [125I]SGMIB-2Rs15d, the kidney uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was 15- and 28-fold lower ( P < 0.001) than that seen for the noncleavable control ([18F]AlF-NOTA-Tz-TCO-2Rs15d) at 1 and 3 h, respectively. Uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d in HER2-expressing SKOV-3 ovarian carcinoma xenografts implanted in athymic mice was about 80% of that seen for coinjected [125I]SGMIB-2Rs15d. On the other hand, kidney uptake was 5-6-fold lower, and as a result, tumor-to-kidney ratios were 4-fold higher for [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d than those for [125I]SGMIB-2Rs15d. SKOV-3 xenografts were clearly delineated even at 1 h after administration of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d by Micro-PET/CT imaging with even higher contrast observed thereafter. In conclusion, this strategy warrants further evaluation for labeling small proteins such as sdAbs because it offers the benefits of good radiochemical yields and enhanced tumor-to-normal tissue ratios, particularly in the kidney.


Asunto(s)
Ciclooctanos/química , Radioisótopos de Flúor/química , Compuestos Heterocíclicos con 1 Anillo/química , Riñón/enzimología , Microvellosidades/enzimología , Radiofármacos/química , Anticuerpos de Dominio Único/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Riñón/ultraestructura , Ratones , Ratones Desnudos
8.
Bioorg Med Chem ; 26(8): 1939-1949, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534937

RESUMEN

In a previous study, we evaluated a HER2-specific single domain antibody fragment (sdAb) 2Rs15d labeled with 18F via conjugation of a residualizing prosthetic agent that was synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC). In order to potentially increase overall efficiency and decrease the time required for labeling, we now investigate the use of a strain-promoted azide-alkyne cycloaddition (SPAAC) between the 2Rs15d sdAb, which had been pre-derivatized with an azide-containing residualizing moiety, and an 18F-labeled aza-dibenzocyclooctyne derivative. The HER2-targeted sdAb 2Rs15d and a nonspecific sdAb R3B23 were pre-conjugated with a moiety containing both azide- and guanidine functionalities. The thus derivatized sdAbs were radiolabeled with 18F using an 18F-labeled aza-dibenzocyclooctyne derivative ([18F]F-ADIBO) via SPAAC, generating the desired conjugate ([18F]RL-II-sdAb). For comparison, unmodified 2Rs15d was labeled with N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB), the prototypical residualizing agent for radioiodination. Radiochemical purity (RCP), immunoreactive fraction (IRF), HER2-binding affinity and cellular uptake of [18F]RL-II-2Rs15d were assessed in vitro. Paired label biodistribution of [18F]RL-II-2Rs15d and [125I]SGMIB-2Rs15d, and microPET/CT imaging of [18F]RL-II-2Rs15d and the [18F]RL-II-R3B23 control sdAb were performed in nude mice bearing HER2-expressing SKOV-3 xenografts. A radiochemical yield of 23.9 ±â€¯6.9% (n = 8) was achieved for the SPAAC reaction between [18F]F-ADIBO and azide-modified 2Rs15d and the RCP of the labeled sdAb was >95%. The affinity (Kd) and IRF for the binding of [18F]RL-II-2Rs15d to HER2 were 5.6 ±â€¯1.3 nM and 73.1 ±â€¯22.5% (n = 3), respectively. The specific uptake of [18F]RL-II-2Rs15d by HER2-expressing BT474M1 breast carcinoma cells in vitro was 14-17% of the input dose at 1, 2, and 4 h, slightly higher than seen for co-incubated [125I]SGMIB-2Rs15d. The uptake of [18F]RL-II-2Rs15d in SKOV-3 xenografts at 1 h and 2 h p.i. were 5.54 ±â€¯0.77% ID/g and 6.42 ±â€¯1.70% ID/g, respectively, slightly higher than those for co-administered [125I]SGMIB-2Rs15d (4.80 ±â€¯0.78% ID/g and 4.78 ±â€¯1.39% ID/g). MicroPET/CT imaging with [18F]RL-II-2Rs15d at 1-3 h p.i. clearly delineated SKOV-3 tumors while no significant accumulation of activity in tumor was seen for [18F]RL-II-R3B23. With the exception of kidneys, normal tissue levels for [18F]RL-II-2Rs15d were low and cleared rapidly. To our knowledge, this is the first time SPAAC method has been used to label an sdAb with 18F, especially with residualizing functionality.


Asunto(s)
Radioisótopos de Flúor/química , Radiofármacos/química , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/química , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Caproatos/química , Línea Celular Tumoral , Química Clic , Femenino , Humanos , Ratones , Ratones Desnudos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular , Trasplante Heterólogo
9.
Molecules ; 23(5)2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29783774

RESUMEN

The residualizing prosthetic agent Nε-(3-[*I]iodobenzoyl)-Lys5-Nα-maleimido-Gly¹-d-GEEEK ([*I]IB-Mal-d-GEEEK) showed promise for the radioiodination of monoclonal antibodies (mAbs) that bind to internalizing molecular targets. Although enhanced tumor uptake was achieved in these studies, elevated kidney accumulation also was observed, particularly with low-molecular-weight, single-domain antibody fragments (sdAbs). Here, we developed an analogous agent (IB-Mal-d-GDDDK), in which glutamate residues (E) were replaced with aspartates (D) to determine whether this modification could decrease renal uptake. [125I]IB-Mal-d-GDDDK and [131I]IB-Mal-d-GEEEK were synthesized with similar radiochemical yields (60⁻80%) and coupled to the anti-HER2 sdAb 5F7 at 50⁻60% efficiency. Paired-label internalization assays in vitro indicated similar levels of intracellular activity residualization in HER2-expressing BT474M1 cells for [125I]IB-Mal-d-GDDDK-5F7 and [131I]IB-Mal-d-GEEEK-5F7. A paired-label biodistribution comparison of the two labeled conjugates was performed in mice with HER2-expressing SKOV-3 xenografts, and the results of this study indicated that renal uptake at 1 h was 127.5 ± 18.7% ID/g and 271.4 ± 66.6% ID/g for [125I]IB-Mal-d-GDDDK-5F7 and [131I]IB-Mal-d-GEEEK-5F7, respectively. The tumor uptake of the two radioconjugates was not significantly different. These results demonstrate that substitution of E with D in the IB-Mal-d-GEEEK construct reduced kidney accumulation of the sdAb. However, renal activity levels need to be reduced further if d-amino acid derived prosthetic agents are to be of practical value for labeling low molecular weight biomolecules such as sdAbs.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Ácido Aspártico/química , Radioisótopos de Yodo/química , Oligopéptidos/síntesis química , Sustitución de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Femenino , Ácido Glutámico/química , Humanos , Radioisótopos de Yodo/farmacocinética , Riñón/química , Ratones , Peso Molecular , Oligopéptidos/química , Oligopéptidos/farmacocinética , Radiofármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Org Biomol Chem ; 14(4): 1261-71, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26645790

RESUMEN

Residualizing labeling methods for internalizing peptides and proteins are designed to trap the radionuclide inside the cell after intracellular degradation of the biomolecule. The goal of this work was to develop a residualizing label for the (18)F-labeling of internalizing biomolecules based on a template used successfully for radioiodination. N-Succinimidyl 3-((4-(4-[(18)F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(bis-Boc-guanidinomethyl)benzoate ([(18)F]SFBTMGMB-Boc2) was synthesized by a click reaction of an azide precursor and [(18)F]fluorohexyne in 8.5 ± 2.8% average decay-corrected radiochemical yield (n = 15). An anti-HER2 nanobody 5F7 was labeled with (18)F using [(18)F]SFBTMGMB ([(18)F]RL-I), obtained by the deprotection of [(18)F]SFBTMGMB-Boc2, in 31.2 ± 6.7% (n = 5) conjugation efficiency. The labeled nanobody had a radiochemical purity of >95%, bound to HER2-expressing BT474M1 breast cancer cells with an affinity of 4.7 ± 0.9 nM, and had an immunoreactive fraction of 62-80%. In summary, a novel residualizing prosthetic agent for labeling biomolecules with (18)F has been developed. An anti-HER2 nanobody was labeled using this prosthetic group with retention of affinity and immunoreactivity to HER2.


Asunto(s)
Neoplasias de la Mama/metabolismo , Guanidinas/química , Radiofármacos/química , Receptor ErbB-2/metabolismo , Succinimidas/química , Neoplasias de la Mama/patología , Femenino , Guanidinas/síntesis química , Guanidinas/metabolismo , Humanos , Estructura Molecular , Radiofármacos/análisis , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/química , Succinimidas/síntesis química , Succinimidas/metabolismo , Células Tumorales Cultivadas
12.
Eur J Nucl Med Mol Imaging ; 41(2): 322-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24173571

RESUMEN

PURPOSE: Both (131)I- and (123)I-labeled meta-iodobenzylguanidine (MIBG) have been widely used in the clinic for targeted imaging of the norepinephrine transporter (NET). The human NET (hNET) gene has been imaged successfully with (124)I-MIBG positron emission tomography (PET) at time points of >24 h post-injection (p.i.). (18)F-labeled MIBG analogs may be ideal to image hNET expression at time points of <8 h p.i. We developed improved methods for the synthesis of known MIBG analogs, [(18)F]MFBG and [(18)F]PFBG and evaluated them in hNET reporter gene-transduced C6 rat glioma cells and xenografts. METHODS: [(18)F]MFBG and [(18)F]PFBG were synthesized manually using a three-step synthetic scheme. Wild-type and hNET reporter gene-transduced C6 rat glioma cells and xenografts were used to comparatively evaluate the (18)F-labeled analogs with [(123)I]/[(124)I]MIBG. RESULTS: The fluorination efficacy on benzonitrile was predominantly determined by the position of the trimethylammonium group. The para-isomer afforded higher yields (75 ± 7%) than meta-isomer (21 ± 5%). The reaction of [(18)F]fluorobenzylamine with 1H-pyrazole-1-carboximidamide was more efficient than with 2-methyl-2-thiopseudourea. The overall radiochemical yields (decay-corrected) were 11 ± 2% (n = 12) for [(18)F]MFBG and 41 ± 12% (n = 5) for [(18)F]PFBG, respectively. The specific uptakes of [(18)F]MFBG and [(18)F]PFBG were similar in C6-hNET cells, but 4-fold less than that of [(123)I]/[(124)I]MIBG. However, in vivo [(18)F]MFBG accumulation in C6-hNET tumors was 1.6-fold higher than that of [(18)F]PFBG at 1 h p.i., whereas their uptakes were similar at 4 h. Despite [(18)F]MFBG having a 2.8-fold lower affinity to hNET and approximately 4-fold lower cell uptake in vitro compared to [(123)I]/[(124)I]MIBG, PET imaging demonstrated that [(18)F]MFBG was able to visualize C6-hNET xenografts better than [(124)I]MIBG. Biodistribution studies showed [(18)F]MFBG and (123)I-MIBG had a similar tumor accumulation, which was lower than that of no-carrier-added [(124)I]MIBG, but [(18)F]MFBG showed a significantly more rapid body clearance and lower uptake in most non-targeting organs. CONCLUSION: [(18)F]MFBG and [(18)F]PFBG were synthesized in reasonable radiochemical yields under milder conditions. [(18)F]MFBG is a better PET ligand to image hNET expression in vivo at 1-4 h p.i. than both [(18)F]PFBG and [(123)I]/[(124)I]MIBG.


Asunto(s)
Fluorobencenos/síntesis química , Guanidinas/síntesis química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Radiofármacos/síntesis química , Animales , Línea Celular Tumoral , Fluorobencenos/farmacocinética , Fluorobencenos/farmacología , Glioma/diagnóstico por imagen , Guanidinas/farmacocinética , Guanidinas/farmacología , Humanos , Ratones , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nucl Med Biol ; 134-135: 108916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38703587

RESUMEN

INTRODUCTION: Targeted α-particle therapy agents have shown promising responses in patients who have developed resistance to ß--particle emitting radionuclides, albeit off-target toxicity remains a concern. Astatine-211 emits only one α-particle per decay and may alleviate the toxicity from α-emitting daughter radionuclides. Previously, we developed the low-molecular-weight PSMA-targeted agent [211At]L3-Lu that showed suitable therapeutic efficacy and was well tolerated in mice. Although [211At]L3-Lu had good characteristics, we now have evaluated a closely related analogue, [211At]YF2, to determine the better molecule for clinical translation. METHODS: The tin precursors and unlabeled iodo standards for [211At]YF2 and [211At]L3-Lu each were synthesized and a new one-step labeling method was developed to produce [211At]YF2 and [211At]L3-Lu from the respective tin precursor. RCY and RCP were determined using RP-HPLC. Cell uptake, internalization and in vitro cell-killing (MTT) assays were performed on PSMA+ PC-3 PIP cells in parallel experiments to compare [211At]YF2 and [211At]L3-Lu directly. A paired-label biodistribution study was performed in athymic mice with subcutaneous PSMA-positive PC-3 PIP xenografts as a head-to-head comparison of [131I]YF2 and [125I]L3-Lu. The tissue distribution of [211At]YF2 and [211At]L3-Lu were determined individually in the same animal model. RESULTS: The syntheses of tin precursors and unlabeled iodo standards were accomplished in reasonable yields. A streamlined and scalable radiolabeling method (1 h total synthesis time) was developed for the radiosynthesis of both [211At]YF2 and [211At]L3-Lu with 86 ± 7 % (n = 10) and 87 ± 5 % (n = 7) RCY, respectively, and > 95 % RCP for both. The maximum activity of [211At]YF2 produced to date was 666 MBq. An alternative method that did not involve HPLC purification was developed that provided similar RCY and RCP. Significantly higher cell uptake, internalization and cytotoxicity was seen for [211At]YF2 compared with [211At]L3-Lu. Significantly higher uptake and longer retention in tumor was seen for [131I]YF2 than for co-administered [125I]L3-Lu, while considerably higher renal uptake was seen for [131I]YF2. The biodistribution of [211At]YF2 was consistent with that of [131I]YF2. CONCLUSION: [211At]YF2 exhibited higher cellular uptake, internalization and cytotoxicity than [211At]L3-Lu on PSMA-positive PC3 PIP cells. Likewise, higher uptake and longer retention in tumor was seen for [211At]YF2. Experiments to evaluate the dosimetry and therapeutic efficacy of [211At]YF2 are under way.


Asunto(s)
Técnicas de Química Sintética , Radioquímica , Animales , Ratones , Humanos , Glutamato Carboxipeptidasa II/metabolismo , Astato/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Distribución Tisular , Masculino
14.
Nucl Med Biol ; 134-135: 108913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38703588

RESUMEN

INTRODUCTION: Single domain antibody fragments (sdAbs) are an appealing scaffold for radiopharmaceutical development due to their small size (~15 kDa), high solubility, high stability, and excellent tumor penetration. Previously, we developed NB7 sdAb, which has very high affinity for an epitope on PSMA that is different from those targeted by small molecule PSMA inhibitors. Herein, we evaluated NB7 after radioiodination using [*I]SGMIB (1,3,4-isomer) and iso-[*I]SGMIB (1,3,5-isomer), as well as their 211At-labeled analogues. METHODS: [*I]SGMIB, iso-[*I]SGMIB, [211At]SAGMB, and iso-[211At]SAGMB conjugates of NB7 sdAb were synthesized and their binding affinity, cell uptake and internalization were assessed in PSMA+ PC3 PIP and PSMA- PC3 flu cells. Biodistribution studies were performed in mice bearing PSMA+ PC3 PIP xenografts. First, a single-label experiment evaluated the tissue distribution of a NB7 bearing a His6-tag (NB7H6) and labeled with iso-[125I]SGMIB. Three paired-label experiments then were performed to compare: a) NB7 labeled using [*I]SGMIB and iso-[*I]SGMIB, b) 131I- vs 211At-labeled NB7 conjugates and c) [125I]SGMIB-NB7H6 to the small molecule PSMA inhibitor [131I]YF2. RESULTS: All NB7 radioconjugates bound specifically to PSMA with dissociation constants, Kd, in the low nM range (1.4-6.4 nM). An initial biodistribution study demonstrated good tumor uptake for iso-[125I]SGMIB-NB7H6 (7.2 ± 1.5 % ID/g at 1 h) and no deleterious effect of the His6-tag on renal activity levels, which declined to 3.1 ± 1.1 % ID/g by 4 h. Paired-label biodistribution found no distinction between the two SGMIB isomer NB7 conjugates with the [131I]SGMIB-NB7-to-iso-[125I]SGMIB-NB7 tumor uptake ratios not significantly different from unity: 1.06 ± 0.08 at 1 h, 1.04 ± 0.12 at 4 h, and 1.07 ± 0.09 at 24 h. Both isomer conjugates cleared rapidly from normal tissues and exhibited very low uptake in thyroid, lacrimal and salivary glands. Paired-label biodistribution of [131I]SGMIB-NB7H6 and [211At]SAGMB-NB7H6 demonstrated similar tumor uptake and kidney clearance for the two radioconjugates. However, levels of 211At in thyroid, stomach, salivary and lacrimal glands were significantly higher (P < 0.05) that those for 131I suggesting greater dehalogenation for [211At]SAGMB-NB7H6. Finally, co-administration of [125I]SGMIB-NB7H6 and [131I]YF2 demonstrated good tumor uptake for both with considerably more rapid renal clearance for the NB7 radioconjugate. CONCLUSION: NB7 radioconjugates exhibited good accumulation in PSMA-positive xenografts with rapid clearance from kidney and other normal tissues. We conclude that NB7 is a potentially useful scaffold for developing PSMA-targeted theranostics with different characteristics than current small molecule and antibody-based approaches.


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Anticuerpos de Dominio Único , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Glutamato Carboxipeptidasa II/inmunología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Antígenos de Superficie/metabolismo , Antígenos de Superficie/inmunología , Línea Celular Tumoral , Distribución Tisular , Transformación Celular Neoplásica
15.
J Nucl Med ; 64(1): 124-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618478

RESUMEN

Single-domain antibody fragments (sdAbs) are attractive for targeted α-particle therapy, particularly with 211At, because of their rapid accumulation in tumor and clearance from normal tissues. Here, we evaluate the therapeutic potential of this strategy with 5F7 and VHH_1028-2 sdAbs that bind with high affinity to domain IV of human epidermal growth factor receptor type 2 (HER2). Methods: The HER2-specific sdAbs and HER2-irrelevant VHH_2001 were labeled using N-succinimidyl-3-211At-astato-5-guanidinomethyl benzoate (iso-211At-SAGMB). The cytotoxicity of iso- 211At-SAGMB-5F7 and iso- 211At-SAGMB-VHH_2001 were compared on HER2-expressing BT474 breast carcinoma cells. Three experiments in mice with subcutaneous BT474 xenografts were performed to evaluate the therapeutic effectiveness of single doses of iso- 211At-SAGMB-5F7 (0.7-3.0 MBq), iso- 211At-SAGMB-VHH_1028 (1.0-3.0 MBq), and iso- 211At-SAGMB-VHH_1028 and iso- 211At-SAGMB-VHH_2001 (∼1.0 MBq). Results: Clonogenic survival of BT474 cells was reduced after exposure to iso- 211At-SAGMB-5F7 (D0 = 1.313 kBq/mL) whereas iso- 211At-SAGMB-VHH_2001 was ineffective. Dose-dependent tumor growth inhibition was observed with 211At-labeled HER2-specific 5F7 and VHH_1028 but not with HER2-irrelevant VHH_2001. At the 3.0-MBq dose, complete tumor regression was seen in 3 of 4 mice treated with iso- 211At-SAGMB-5F7 and 8 of 11 mice treated with iso- 211At-SAGMB-VHH_1028; prolongation in median survival was 495% and 414%, respectively. Conclusion: Combining rapidly internalizing, high-affinity HER2-targeted sdAbs with the iso- 211At-SAGMB residualizing prosthetic agent is a promising strategy for targeted α-particle therapy of HER2-expressing cancers.


Asunto(s)
Neoplasias de la Mama , Anticuerpos de Dominio Único , Humanos , Animales , Ratones , Femenino , Anticuerpos de Dominio Único/uso terapéutico , Anticuerpos de Dominio Único/metabolismo , Xenoinjertos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resultado del Tratamiento
16.
J Med Chem ; 65(22): 15358-15373, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36368007

RESUMEN

Because of their rapid tumor accumulation and normal tissue clearance, single-domain antibody fragments (sdAbs) are an attractive vehicle for developing radiotherapeutics labeled with the α-emitter 211At. Herein, we have evaluated iso-[211At]AGMB-PODS, a prosthetic agent that combines a functionality for residualizing radiohalogens with a phenyloxadiazolyl methylsulfone (PODS) moiety for site-specific sdAb conjugation. Iso-[211At]AGMB-PODS and its radioiodinated analogue were evaluated for thiol-selective conjugation to anti-HER2 5F7 sdAb bearing a C-terminus GGC tail. Both radiohalogenated PODS-5F7GGC conjugates were synthesized in good radiochemical yields and retained high binding affinity on HER2-positive BT474 breast carcinoma cells. Iso-[211At]AGMB-PODS-5F7GGC was considerably more stable in vitro than its maleimide analogue in the presence of cysteine and human serum albumin (HSA) and exhibited excellent tumor uptake and high in vivo stability. Superior tumor-to-kidney activity ratios were seen for both radiohalogenated PODS-5F7GGC conjugates compared with [177Lu]Lu-DOTA-PODS-5F7GGC. These results suggest that iso-[211At]AGMB-PODS-5F7GGC warrants further evaluation for the treatment of HER2-expressing malignancies.


Asunto(s)
Neoplasias de la Mama , Anticuerpos de Dominio Único , Humanos , Femenino , Receptor ErbB-2/metabolismo , Distribución Tisular , Radiofármacos/química , Neoplasias de la Mama/patología , Línea Celular Tumoral
17.
Clin Cancer Res ; 28(18): 4146-4157, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35861867

RESUMEN

PURPOSE: [131I]meta-iodobenzylguanidine ([131I]MIBG) is a targeted radiotherapeutic administered systemically to deliver beta particle radiation in neuroblastoma. However, relapses in the bone marrow are common. [211At]meta-astatobenzylguanidine ([211At] MABG) is an alpha particle emitter with higher biological effectiveness and short path length which effectively sterilizes microscopic residual disease. Here we investigated the safety and antitumor activity [211At]MABG in preclinical models of neuroblastoma. EXPERIMENTAL DESIGN: We defined the maximum tolerated dose (MTD), biodistribution, and toxicity of [211At]MABG in immunodeficient mice in comparison with [131I]MIBG. We compared the antitumor efficacy of [211At]MABG with [131I]MIBG in three murine xenograft models. Finally, we explored the efficacy of [211At]MABG after tail vein xenografting designed to model disseminated neuroblastoma. RESULTS: The MTD of [211At]MABG was 66.7 MBq/kg (1.8 mCi/kg) in CB17SC scid-/- mice and 51.8 MBq/kg (1.4 mCi/kg) in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Biodistribution of [211At]MABG was similar to [131I]MIBG. Long-term toxicity studies on mice administered with doses up to 41.5 MBq/kg (1.12 mCi/kg) showed the radiotherapeutic to be well tolerated. Both 66.7 MBq/kg (1.8 mCi/kg) single dose and fractionated dosing 16.6 MBq/kg/fraction (0.45 mCi/kg) × 4 over 11 days induced marked tumor regression in two of the three models studied. Survival was significantly prolonged for mice treated with 12.9 MBq/kg/fraction (0.35 mCi/kg) × 4 doses over 11 days [211At]MABG in the disseminated disease (IMR-05NET/GFP/LUC) model (P = 0.003) suggesting eradication of microscopic disease. CONCLUSIONS: [211At]MABG has significant survival advantage in disseminated models of neuroblastoma. An alpha particle emitting radiopharmaceutical may be effective against microscopic disseminated disease, warranting clinical development.


Asunto(s)
Astato , Neuroblastoma , 3-Yodobencilguanidina/efectos adversos , Partículas alfa/uso terapéutico , Animales , Astato/uso terapéutico , Guanidinas/uso terapéutico , Humanos , Radioisótopos de Yodo/uso terapéutico , Ratones , Ratones Endogámicos NOD , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/radioterapia , Radiofármacos/efectos adversos , Distribución Tisular , Células Tumorales Cultivadas
18.
Sci Rep ; 12(1): 3020, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194100

RESUMEN

Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Expresión Génica/genética , Fragmentos de Inmunoglobulinas/uso terapéutico , Radioisótopos de Yodo/farmacología , Radioisótopos de Yodo/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Radiofármacos/farmacología , Radiofármacos/uso terapéutico , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Nucl Med ; 63(2): 259-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34088772

RESUMEN

α-Particle emitters targeting the prostate-specific membrane antigen (PSMA) proved effective in treating patients with prostate cancer who were unresponsive to the corresponding ß-particle therapy. 211At is an α-emitter that may engender less toxicity than other α-emitting agents. We synthesized a new 211At-labeled radiotracer targeting PSMA that resulted from the search for a pharmacokinetically optimized agent. Methods: A small series of 125I-labeled compounds was synthesized from tin precursors to evaluate the effect of the location of the radiohalogen within the molecule and the presence of lutetium in the chelate on biodistribution. On that basis, 211At-3-Lu was selected and evaluated in cell uptake and internalization studies, and biodistribution and PSMA-expressing (PSMA+) PC3 PIP tumor growth control were evaluated in experimental flank and metastatic (PC3-ML-Luc) models. A long-term (13-mo) toxicity study was performed for 211At-3-Lu, including tissue chemistries and histopathology. Results: The radiochemical yield of 211At-3-Lu was 17.8% ± 8.2%. Lead compound 211At-3-Lu demonstrated total uptake within PSMA+ PC3 PIP cells of 13.4 ± 0.5% of the input dose after 4 h of incubation, with little uptake in control cells. In SCID mice, 211At-3-Lu provided uptake that was 30.6 ± 4.8 percentage injected dose per gram (%ID/g) in PSMA+ PC3 PIP tumor at 1 h after injection, and this uptake decreased to 9.46 ± 0.96 %ID/g by 24 h. Tumor-to-salivary gland and tumor-to-kidney ratios were 129 ± 99 at 4 h and 130 ± 113 at 24 h, respectively. Deastatination was not significant (stomach, 0.34 ± 0.20 %ID/g at 4 h). Dose-dependent survival was demonstrated at higher doses (>1.48 MBq) in both flank and metastatic models. There was little off-target toxicity, as demonstrated by hematopoietic stability, unchanged tissue chemistries, weight gain rather than loss throughout treatment, and favorable histopathologic findings. Conclusion: Compound 211At-3-Lu or close analogs may provide limited and acceptable toxicity while retaining efficacy in management of prostate cancer.


Asunto(s)
Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Lutecio/química , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Radiofármacos/química , Radiofármacos/uso terapéutico , Distribución Tisular
20.
Neurooncol Adv ; 4(1): vdac135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36128586

RESUMEN

Background: Single-domain antibody fragments (aka VHH, ~ 13 kDa) are promising delivery systems for brain tumor theranostics; however, achieving efficient delivery of VHH to intracranial lesions remains challenging due to the tumor-brain barrier. Here, we evaluate low-dose whole-brain irradiation as a strategy to increase the delivery of an anti- human epidermal growth factor receptor type 2 (HER2) VHH to breast cancer-derived intracranial tumors in mice. Methods: Mice with intracranial HER2-positive BT474BrM3 tumors received 10-Gy fractionated cranial irradiation and were evaluated by noninvasive imaging. Anti-HER2 VHH 5F7 was labeled with 18F, administered intravenously to irradiated mice and controls, and PET/CT imaging was conducted periodically after irradiation. Tumor uptake of 18F-labeled 5F7 in irradiated and control mice was compared by PET/CT image analysis and correlated with tumor volumes. In addition, longitudinal dynamic contrast-enhanced MRI (DCE-MRI) was conducted to visualize and quantify the potential effects of radiation on tumor perfusion and permeability. Results: Increased 18F-labeled 5F7 intracranial tumor uptake was observed with PET in mice receiving cranial irradiation, with maximum tumor accumulation seen approximately 12 days post initial radiation treatment. No radiation-induced changes in HER2 expression were detected by Western blot, flow cytometry, or on tissue sections. DCE-MRI imaging demonstrated transiently increased tumor perfusion and permeability after irradiation, consistent with the higher tumor uptake of 18F-labeled anti-HER2 5F7 in irradiated mice. Conclusion: Low-level brain irradiation induces dynamic changes in tumor vasculature that increase the intracranial tumor delivery of an anti-HER2 VHH, which could facilitate the use of radiolabeled VHH to detect, monitor, and treat HER2-expressing brain metastases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA