Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
FASEB J ; 36(10): e22544, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36098469

RESUMEN

Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11-/-) heart and subjected adult mice with partial (Wnt11+/-) and complete Wnt11 (Wnt11-/-) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth. Wnt11 deficiency did not affect cardiomyocyte proliferation or maturation in the postnatal or adolescent heart. However, Wnt11 deficiency led to enlarged heart phenotype that was not accompanied by significant hypertrophy of individual cardiomyocytes. Analysis of stressed adult hearts from wild-type mice showed a progressive decrease in Wnt11 expression in response to pressure overload. When studied in experimental cardiac pressure overload, Wnt11 deficiency did not exacerbate cardiac hypertrophy or remodeling and cardiac function remained identical between the genotypes. When subjecting cardiomyocytes to hypertrophic stimulus, the presence of recombinant Wnt11 together with Wnt5a reduced protein synthesis. In conclusion, Wnt11 deficiency does not affect postnatal cardiomyocyte proliferation but leads to cardiac growth. Interestingly, Wnt11 deficiency alone does not substantially modulate hypertrophic response to pressure overload in vivo. Wnt11 may require cooperation with other noncanonical Wnt proteins to regulate hypertrophic response under stress.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Animales , Cardiomegalia/metabolismo , Proliferación Celular , Ratones , Miocardio , Proteínas Wnt/genética
2.
FASEB J ; 34(8): 9911-9924, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32427381

RESUMEN

Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Modelos Animales de Enfermedad , Corazón/fisiología , Atrofia Muscular/prevención & control , Isquemia Miocárdica/complicaciones , Factores de Transcripción/metabolismo , Remodelación Ventricular/fisiología , Receptores de Activinas Tipo II/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Transducción de Señal , Factores de Transcripción/genética
3.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948382

RESUMEN

Prior studies show that glycogen synthase kinase 3ß (GSK3ß) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3ß is constitutionally active and phosphorylation of GSK3ß at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3ß is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3ß S389 phosphorylation in diseased hearts and utilized overexpression of GSK3ß carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3ß in primary cardiomyocytes. We found that phosphorylation of GSK3ß at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3ß S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3ß mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3ß S389A or GSK3ß S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3ß S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3ß at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/patología , Animales , Cardiomegalia/patología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas Sprague-Dawley
4.
Mol Ther ; 27(3): 600-610, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30765322

RESUMEN

Activin A and myostatin, members of the transforming growth factor (TGF)-ß superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function following IR. ACVR2B-Fc modified cardiac metabolism, LV mitochondrial respiration, as well as cardiac phenotype toward physiological hypertrophy. Similar to its protective role in IR injury in vivo, ACVR2B-Fc antagonized SMAD2 signaling and cell death in cardiomyocytes that were subjected to hypoxic stress. ACVR2B ligand myostatin was found to exacerbate hypoxic stress. In addition to acute cardioprotection in ischemia, ACVR2B-Fc provided beneficial effects on cardiac function in prolonged cardiac stress in cardiotoxicity model. By blocking myostatin, ACVR2B-Fc potentially reduces cardiomyocyte death and modifies cardiomyocyte metabolism for hypoxic conditions to protect the heart from IR injury.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteína Smad2/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miostatina/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína Smad2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Basic Res Cardiol ; 114(2): 7, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635790

RESUMEN

Sprouty1 (Spry1) is a negative modulator of receptor tyrosine kinase signaling, but its role in cardiomyocyte survival has not been elucidated. The aim of this study was to investigate the potential role of cardiomyocyte Spry1 in cardiac ischemia-reperfusion (I/R) injury. Infarct areas of mouse hearts showed an increase in Spry1 protein expression, which localized to cardiomyocytes. To investigate if cardiomyocyte Spry1 regulates I/R injury, 8-week-old inducible cardiomyocyte Spry1 knockout (Spry1 cKO) mice and control mice were subjected to cardiac I/R injury. Spry1 cKO mice showed reduction in release of cardiac troponin I and reduced infarct size after I/R injury compared to control mice. Similar to Spry1 knockdown in cardiomyocytes in vivo, RNAi-mediated Spry1 silencing in isolated cardiomyocytes improved cardiomyocyte survival following simulated ischemia injury. Mechanistically, Spry1 knockdown induced cardiomyocyte extracellular signal-regulated kinase (ERK) phosphorylation in healthy hearts and isolated cardiomyocytes, and enhanced ERK phosphorylation after I/R injury. Spry1-deficient cardiomyocytes showed better preserved mitochondrial membrane potential following ischemic injury and an increase in levels of phosphorylated ERK and phosphorylated glycogen synthase kinase-3ß (GSK-3ß) in mitochondria of hypoxic cardiomyocytes. Overexpression of constitutively active GSK-3ß abrogated the protective effect of Spry1 knockdown. Moreover, pharmacological inhibition of GSK-3ß protected wild-type cardiomyocytes from cell death, but did not further protect Spry1-silenced cardiomyocytes from hypoxia-induced injury. Cardiomyocyte Spry1 knockdown promotes ERK phosphorylation and offers protection from I/R injury. Our findings indicate that Spry1 is an important regulator of cardiomyocyte viability during ischemia-reperfusion injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Animales , Supervivencia Celular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas
6.
Basic Res Cardiol ; 111(1): 2, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26611206

RESUMEN

The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.


Asunto(s)
Corazón , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocardio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envejecimiento , Animales , Receptores de Apelina , Western Blotting , Modelos Animales de Enfermedad , Masculino , Ratones , Infarto del Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología
7.
J Biol Chem ; 287(7): 4572-80, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22170057

RESUMEN

Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.


Asunto(s)
Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Fragmentos de Péptidos/metabolismo , Somatostatina/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Endotelina-1/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Masculino , Miocitos Cardíacos/citología , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Somatostatina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
JACC Basic Transl Sci ; 4(1): 83-94, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847422

RESUMEN

Myocardial infarction (MI)-induced cardiac fibrosis attenuates cardiac contractile function, and predisposes to arrhythmias and sudden cardiac death. Expression of connective tissue growth factor (CTGF) is elevated in affected organs in virtually every fibrotic disorder and in the diseased human myocardium. Mice were subjected to treatment with a CTGF monoclonal antibody (mAb) during infarct repair, post-MI left ventricular (LV) remodeling, or acute ischemia-reperfusion injury. CTGF mAb therapy during infarct repair improved survival and reduced LV dysfunction, and reduced post-MI LV hypertrophy and fibrosis. Mechanistically, CTGF mAb therapy induced expression of cardiac developmental and/or repair genes and attenuated expression of inflammatory and/or fibrotic genes.

9.
Hypertension ; 63(6): 1235-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24688123

RESUMEN

Connective tissue growth factor (CTGF) is involved in the pathogenesis of various fibrotic disorders. However, its role in the heart is not clear. To investigate the role of CTGF in regulating the development of cardiac fibrosis and heart failure, we subjected mice to thoracic aortic constriction (TAC) or angiotensin II infusion, and antagonized the function of CTGF with CTGF monoclonal antibody (mAb). After 8 weeks of TAC, mice treated with CTGF mAb had significantly better preserved left ventricular (LV) systolic function and reduced LV dilatation compared with mice treated with control immunoglobulin G. CTGF mAb-treated mice exhibited significantly smaller cardiomyocyte cross-sectional area and reduced expression of hypertrophic marker genes. CTGF mAb treatment reduced the TAC-induced production of collagen 1 but did not significantly attenuate TAC-induced accumulation of interstitial fibrosis. Analysis of genes regulating extracellular matrix proteolysis showed decreased expression of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 in mice treated with CTGF mAb. In contrast to TAC, antagonizing the function of CTGF had no effect on LV dysfunction or LV hypertrophy in mice subjected to 4-week angiotensin II infusion. Further analysis showed that angiotensin II-induced expression of hypertrophic marker genes or collagens was not affected by treatment with CTGF mAb. In conclusion, CTGF mAb protects from adverse LV remodeling and LV dysfunction in hearts subjected to pressure overload by TAC. Antagonizing the function of CTGF may offer protection from cardiac end-organ damage in patients with hypertension.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Factor de Crecimiento del Tejido Conjuntivo/antagonistas & inhibidores , Insuficiencia Cardíaca/complicaciones , Disfunción Ventricular Izquierda/prevención & control , Remodelación Ventricular/efectos de los fármacos , Angiotensina II/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patología , Colágeno Tipo I/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/inmunología , Constricción Patológica/fisiopatología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Presión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Disfunción Ventricular Izquierda/etiología , Soporte de Peso/fisiología
10.
Pharmacol Res Perspect ; 2(4): e00056, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25505600

RESUMEN

The members of lethal-7 (Let-7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let-7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4-week follow-up period. Let-7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let-7c miRNA downregulated the levels of mature Let-7c miRNA and its other closely related members of Let-7 family in the heart and resulted in increased expression of pluripotency-associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let-7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let-7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2-positive fibroblasts, while the number of c-kit(+) cardiac stem cells and Ki-67(+) proliferating cells remained unaltered. In conclusion, inhibition of Let-7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure.

11.
Mol Cell Biol ; 33(16): 3321-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775121

RESUMEN

Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2(gt/gt) mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2(gt/gt) hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2(gt/gt) hearts than in wild-type hearts. Hif-p4h-2(gt/gt) mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2(gt/gt) hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/patología , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Miocardio/patología , Procolágeno-Prolina Dioxigenasa/genética , Animales , Apoptosis , Hipoxia de la Célula , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Vasos Coronarios/ultraestructura , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Corazón/fisiopatología , Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , ARN Mensajero/genética , Receptor TIE-2/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA