Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer Ther ; 21(7): 1207-1218, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500016

RESUMEN

Common lymphatic endothelial and vascular endothelial receptor-1 (Clever-1) is a multifunctional type-1 transmembrane protein that plays an important role in immunosuppression against tumors. Clever-1 is highly expressed in a subset of human tumor-associated macrophages and associated with poor survival. In mice, Clever-1 supports tumor growth and metastasis formation, and its deficiency or blockage induces T-cell-dependent killing of cancer cells. Therefore, targeting Clever-1 could lead to T-cell activation and restoration of immune response also in patients with cancer. This is studied in an on-going clinical trial [Macrophage Antibody To INhibit immune Suppression (MATINS); NCT03733990] in patients with advanced solid tumors where bexmarilimab, a humanized IgG4 antibody against human Clever-1, shows promising safety and efficacy. Here, we report the humanization and nonclinical characterization of physicochemical properties, biological potency, and safety profile of bexmarilimab. Bexmarilimab showed high affinity to Clever-1 on KG-1 cells and bound to Clever-1 on the surface of classical and intermediate monocytes derived from healthy human blood. Bexmarilimab inhibited the internalization of its natural ligand acetylated low-density lipoprotein into KG-1 cells and increased TNFα secretion from macrophages but did not impair phagocytic clearance. Bexmarilimab did not induce significant cytokine release in human whole-blood cultures, did not contain nonsafe immunogenic glycans, or show any significant binding to human Fcγ receptors or complement pathway component C1q. In vivo, bexmarilimab showed dose-dependent duration of monocyte Clever-1 receptor occupancy in cynomolgus monkeys but did not induce a cytokine storm up to a dose of 100 mg/kg. In conclusion, these data support the clinical development of bexmarilimab for the restoration of immune response in cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Activación de Linfocitos , Macrófagos/metabolismo , Ratones , Monocitos/metabolismo , Neoplasias/patología
2.
Org Biomol Chem ; 8(4): 886-95, 2010 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-20135048

RESUMEN

Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.


Asunto(s)
Amidas/metabolismo , Candida/enzimología , Carboxipeptidasas/metabolismo , Lipasa/metabolismo , Metionina/análogos & derivados , Acilación , Sitios de Unión , Catálisis , Electroforesis en Gel de Poliacrilamida/métodos , Hidrólisis , Metionina/química , Modelos Químicos , Modelos Moleculares , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA