Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Opt Express ; 32(7): 11681-11692, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571010

RESUMEN

Quantum cascade lasers (QCLs) are ubiquitous mid-infrared sources owing to their flexible designs and compact footprints. Manufacturing multiwavelength QCL chips with high power levels and good beam quality is highly desirable for many applications. In this study, we demonstrate an λ ∼ 4.9 µm monolithic, wavelength beam-combined (WBC) infrared laser source by integrating on a single chip array of five QCL gain sections with an arrayed waveguide grating (AWG). Optical feedback from the cleaved facets enables lasing, whereas the integrated AWG locks the emission spectrum of each gain section to its corresponding input channel wavelength and spatially combines their signals into a single-output waveguide. Our chip features high peak power from the common aperture exceeding 0.6 W for each input channel, with a side-mode suppression ratio (SMSR) of over 27 dB when operated in pulsed mode. Our active/passive integration approach allows for a seamless transition from the QCL ridges to the AWG without requiring regrowth or evanescent coupling schemes, leading to a robust design. These results pave the way for the development of highly compact mid-IR sources suitable for applications such as hyperspectral imaging.

2.
Opt Express ; 31(3): 5056-5068, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785457

RESUMEN

Photonic integrated circuits and mid-infrared quantum cascade lasers have attracted significant attention over the years because of the numerous applications enabled by these compact semiconductor chips. In this paper, we demonstrate low loss passive waveguides and highly efficient arrayed waveguide gratings that can be used, for example, to beam combine infrared (IR) laser arrays. The waveguide structure used consists of an In0.53Ga0.47As core and InP cladding layers. This material system was chosen because of its compatibility with future monolithic integration with quantum cascade lasers. Different photonic circuits were fabricated using standard semiconductor processes, and experiments conducted with these chips demonstrated low-loss waveguides with an estimated propagation loss of ∼ 1.2 dB/cm as well as micro-ring resonators with an intrinsic Q-factor of 174,000. Arrayed waveguide gratings operating in the 5.15-5.34 µm range feature low insertion loss and non-uniformity of ∼ 0.9 dB and ∼ 0.6 dB, respectively. The demonstration of the present photonic circuits paves the path toward monolithic fabrication of compact infrared light sources with advanced functionalities beneficial to many chemical sensing and high-power applications.

3.
Opt Lett ; 45(12): 3248-3251, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538954

RESUMEN

We report a portable broadband photoacoustic spectroscopic system for trace gas detection using distributed feedback quantum cascade laser arrays. By sequentially firing 128 lasers, our system acquires a photoacoustic spectrum covering 565cm-1 (935-1500cm-1) with a normalized-noise-equivalent-absorption coefficient of 2.5×10-9cm-1WHz-1/2. The firing sequence that determines when and which laser to activate is programmable, which enables frequency-multiplexing excitation. For demonstration, 12 lasers are modulated simultaneously at distinct frequencies, and a photoacoustic spectrum is acquired within 13 ms. The compactness (28cm×17cm×13cm, 3.5 kg) and low power consumption enable convenient installation for on-site monitoring.

4.
Opt Express ; 26(9): 12159-12168, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716130

RESUMEN

This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.

5.
J Surg Res ; 201(2): 425-31, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27020828

RESUMEN

BACKGROUND: The knowledge of hemoglobin oxygen saturation (SO2) and tissue oxygenation is critical to identify the presence of shock and therapeutic options. The resonance vibrational enhancement of hemoglobin allows measurement of oxy- and deoxy species of hemoglobin and resonance Raman spectroscopy (RRS-StO2) has been successfully used to measure aggregate microvascular oxygenation. We tested the hypothesis that noninvasive oxygen saturation measured by RRS-StO2 could serve as surrogate of systemic central venous SO2. METHODS: In anesthetized rats, measurements of RRS-StO2 made in oral mucosa, skin, muscle, and liver were compared with measurements of central venous SO2 using traditional multi-wavelength oximetry. Various oxygenation levels were obtained using a stepwise hemorrhage while over 100 paired blood samples and Raman-based measurements were performed. The relationships between RRS-StO2 and clinically important systemic blood parameters were also evaluated. RRS-StO2 measurements were made in 3-mm diameter tissue areas using a microvascular oximeter and a handheld probe. RESULTS: Significant correlations were found between venous SO2 and RRS-StO2 measurements made in the oral mucosa (r = 0.913, P < 0.001), skin (r = 0.499, P < 0.01), and liver (r = 0.611, P < 0.05). The mean difference between sublingual RRS-StO2 and blood sample SO2 values was 5.4 ± 1.6%. Sublingual RRS-StO2 also correlated with lactate (r = 0.909, P < 0.01), potassium (r = 0.757, P < 0.01), and pH (r = 0.703, P < 0.05). CONCLUSIONS: Raman-based oxygen saturation is a promising technique for the noninvasive evaluation of oxygenation in skin, thin tissues, and solid organs. Under certain conditions, sublingual RRS-StO2 measurements correlate with central venous SO2.


Asunto(s)
Monitoreo de Gas Sanguíneo Transcutáneo/métodos , Oxígeno/análisis , Espectrometría Raman , Animales , Ratas Sprague-Dawley
6.
PNAS Nexus ; 2(5): pgad148, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37265545

RESUMEN

Eye diseases are diagnosed by visualizing often irreversible structural changes occurring late in disease progression, such as retinal ganglion cell loss in glaucoma. The retina and optic nerve head have high mitochondrial energy need. Early mitochondrial/energetics dysfunction may predict vulnerability to permanent structural changes. In the in vivo murine eye, we used light-based resonance Raman spectroscopy (RRS) to assess noninvasively the redox states of mitochondria and hemoglobin which reflect availability of electron donors (fuel) and acceptors (oxygen). As proof of principle, we demonstrated that the mitochondrial redox state at the optic nerve head correlates with later retinal ganglion loss after acute intraocular pressure (IOP) elevation. This technology can potentially map the metabolic health of eye tissue in vivo complementary to optical coherence tomography, defining structural changes. Early detection (and normalization) of mitochondrial dysfunction before irreversible damage could lead to prevention of permanent neural loss.

7.
Photoacoustics ; 17: 100159, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31956489

RESUMEN

Here we report on the broadband detection of nitrous oxide (N2O) and methane (CH4) mixtures in dry nitrogen by using a quartz-enhanced photoacoustic (QEPAS) sensor exploiting an array of 32 distributed-feedback quantum cascade lasers, within a spectral emission range of 1190-1340 cm-1 as the excitation source. Methane detection down to a minimum detection limit of 200 ppb at 10 s lock-in integration time was achieved. The sensor demonstrated a linear response in the range of 200-1000 ppm. Three different mixtures of N2O and CH4 in nitrogen at atmospheric pressure have been analyzed. The capability of the developed QEPAS sensor to selectively determine the N2O and CH4 concentrations was demonstrated, in spite of significant overlap in their respective absorption spectra in the investigated spectral range.

8.
Sci Transl Med ; 9(408)2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931652

RESUMEN

Assessing the adequacy of oxygen delivery to tissues is vital, particularly in the fields of intensive care medicine and surgery. As oxygen delivery to a cell becomes deficient, changes in mitochondrial redox state precede changes in cellular function. We describe a technique for the continuous monitoring of the mitochondrial redox state on the epicardial surface using resonance Raman spectroscopy. We quantify the reduced fraction of specific electron transport chain cytochromes, a metric we name the resonance Raman reduced mitochondrial ratio (3RMR). As oxygen deficiency worsens, heme moieties within the electron transport chain become progressively more reduced, leading to an increase in 3RMR. Myocardial 3RMR increased from baseline values of 18.1 ± 5.9 to 44.0 ± 16.9% (P = 0.0039) after inferior vena cava occlusion in rodents (n = 8). To demonstrate the diagnostic power of this measurement, 3RMR was continuously measured in rodents (n = 31) ventilated with 5 to 8% inspired oxygen for 30 min. A 3RMR value exceeding 40% at 10 min predicted subsequent cardiac arrest with 95% sensitivity and 100% specificity [area under the curve (AUC), 0.98], outperforming all current measures, including contractility (AUC, 0.51) and ejection fraction (AUC, 0.39). 3RMR correlated with indices of intracellular redox state and energy production. This technique may permit the real-time identification of critical defects in organ-specific oxygen delivery.


Asunto(s)
Paro Cardíaco/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Miocardio/patología , Animales , Aorta/patología , Hemodinámica , Hemoglobinas/química , Hemoglobinas/metabolismo , Hipoxia/complicaciones , Hipoxia/patología , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Mioglobina/química , Mioglobina/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Ratas Sprague-Dawley , Espectrometría Raman , Sus scrofa
9.
J Trauma Acute Care Surg ; 76(2): 402-8, 2014 02.
Artículo en Inglés | MEDLINE | ID: mdl-24378619

RESUMEN

BACKGROUND: The ability to monitor the patient of hemorrhage noninvasively remains a challenge. We examined the ability of resonance Raman spectroscopy to monitor tissue hemoglobin oxygenation (RRS-StO2) during hemorrhage and compared its performance with conventional invasive mixed venous (SmvO2) and central venous (ScvO2) hemoglobin oxygen saturation as well as with near-infrared spectroscopy tissue hemoglobin oxygenation (NIRS-StO2). METHODS: Five male swine were anesthetized and instrumented followed by hemorrhage at a rate of 30 mL/min for 60 minutes. RRS-StO2 was continuously measured from the buccal mucosa, and NIRS-StO2 was continuously measured from the forelimb. Paired interval measures of SmvO2, ScvO2, and lactate were made. Pearson correlation was used to quantify the degree to which any two variables are related. Receiver operating characteristic (ROC) area under the curve values were used for pooled data for RRS-StO2, NIRS-StO2, SmvO2, and ScvO2 to compare performance in the ability of tissue oxygenation methods to predict the presence of an elevated arterial blood lactate level. RESULTS: Sequential RRS-StO2 changes tracked changes in SmvO2 (r = 0.917; 95% confidence interval [CI], 0.867-0.949) and ScvO2 (r = 0.901; 95% CI, 0.828-0.944) during hemorrhage, while NIRS-StO2 failed to do so for SmvO2 (r = 0.283; 95% CI, 0.04919-0.4984) and ScvO2 (r = 0.142; 95% CI, -0.151 to 0.412). ROC curve performance of oxygenation measured to indicate lactate less than or greater than 3 mM yielded the following ROC area under the curve values: SmvO2 (1.0), ScvO2 (0.994), RRS-StO2 (0.972), and NIRS-StO2 (0.611). CONCLUSION: RRS-StO2 seems to have significantly better ability to track central oxygenation measures during hemorrhage as well as to predict shock based on elevated lactate levels when compared with NIRS-StO2.


Asunto(s)
Monitoreo Fisiológico/métodos , Oxígeno/sangre , Choque Hemorrágico/diagnóstico , Espectroscopía Infrarroja Corta/métodos , Espectrometría Raman/métodos , Animales , Análisis de los Gases de la Sangre , Intervalos de Confianza , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Hemorragia/complicaciones , Hemorragia/diagnóstico , Masculino , Mucosa Bucal/irrigación sanguínea , Consumo de Oxígeno/fisiología , Curva ROC , Distribución Aleatoria , Sensibilidad y Especificidad , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA