Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 314: 114984, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35430516

RESUMEN

The European Union (EU) depends on third markets to supply many important raw materials. Increasing the circularity of critical raw materials within the EU is important not only from an environmental perspective, but also as a competitive advantage for the EU economy. In the case of boron, the EU's import dependency is about 100%. This work aims to evaluate the boron recovery from seawater desalination plants (SWDP) brines using ion-exchange resins in a circular economy approach. Commercial boron selective resins Purolite S108, DIAION CRB03 and CRB05 were tested and compared on batch and dynamic experiments. Thermodynamic and kinetic experiments were performed, and results were fitted by linear and non-linear models. After a comparison, results showed a good fit to the Langmuir isotherm and the pseudo-second order model, respectively, for all the commercial resins tested. The DIAION CRB03 resin presented higher sorption capacity and percentage of boron sorbed than the other resins and was selected as the best option for boron recovery from SWDP brine. Dynamic experiments in fixed bed column using DIAION CRB03 resulted in a sorption capacity of 13 mg/g of resin, a boron recovery of 98% and a concentration factor of 30, for an initial boron concentration of 50 mg/L. In addition, an economic analysis was carried out as a preliminary estimate of the revenues obtained from the production of boric acid from the brine produced by El Prat desalination plant.


Asunto(s)
Boro , Resinas de Intercambio Iónico , Adsorción , Concentración de Iones de Hidrógeno , Intercambio Iónico , Sales (Química) , Agua de Mar
2.
Artículo en Inglés | MEDLINE | ID: mdl-24171417

RESUMEN

Prediction of breakthrough curves for continuous sorption characterization is generally performed by means of simple and simplified equations. These expressions hardly have any physical meaning and, also do not allow extrapolation. A novel and simple approach, based on unsteady state mass balances, is presented herein for the simulation of the adsorption of Cr(III) ions from aqueous onto a low-cost adsorbent (leonardite). The proposed model overcomes the limitations of the commonly used analytical solution-based models without the need for complex mathematical methods. A set of experimental breakthrough curves obtained from lab-scale, fixed-bed columns was used to calibrate and validate the proposed model with a minimum number of parameters to be adjusted.


Asunto(s)
Cromo/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Cromo/química , Modelos Teóricos , Contaminantes Químicos del Agua/química
3.
Sci Total Environ ; 946: 174131, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909810

RESUMEN

Agricultural systems in the 21st Century face the double challenge of achieving climate neutrality while maintaining food security. Synthetic fertilizers rich in nitrogen (N-fertilizers) boost agricultural production at the expense of increasing climate impact. Public policies, such as the Farm-to-Fork (F2F) Strategy, aim to reduce the extensive use of N-fertilizers with the ultimate goal of achieving a climate neutral European Union (EU). However, the strong link between N-fertilizers and GHG emissions (i.e., CO2, CH4 and, especially, N2O) highlights the need to better understand the climate impact of this sector. The present study conducts a climate impact analysis of Spanish N-fertilizer sector for two periods: (i) from 1960 to 2020 using real data and (ii) from 2021 to 2100 considering five forecasted scenarios. The scenarios range from business-as-usual practices to a full accomplishment of the goals pursued by the EU's F2F strategy. The system's climate stability and neutrality are analysed for the different scenarios based on radiative forcing (RF) metrics. Additionally, the study evaluates the short-term impact of the EU decarbonization goals on the climate impact of the Spanish N-fertilizer sector. The results of the study illustrate that the long-lasting climate impact of N2O and CO2 emissions compromise the capacity of N-fertilizer sector to achieve climate stability and approach climate neutrality. However, the decarbonisation of transport and N-fertilizer production activities is an important driver to substantially reduce the life cycle CH4 and CO2 emissions in the Spanish N-fertilizer sector. The results also highlight that more severe reductions on N-cycles than those suggested by the EU's F2F are required, especially to reduce the long-lasting N2O emissions in the N-fertilizer sector. Overall, the study concludes that using RF-based metrics increases robustness and transparency of climate assessments, which is necessary for a higher integration of climate science within public policymaking.

4.
Bioresour Technol ; 384: 129326, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315623

RESUMEN

The present study investigates the environmental and economic feasibility of implementing membrane technologies and struvite crystallisation (SC) for nutrient recovery from the anaerobic digestion supernatant. To this end, one scenario combining partial-nitritation/Anammox and SC was compared with three scenarios combining membrane technologies and SC. The combination of ultrafiltration, SC and liquid-liquid membrane contactor (LLMC) was the less environmentally impactful scenario. SC and LLMC were the most important environmental and economic contributors in those scenarios using membrane technologies. The economic evaluation illustrated that combining ultrafiltration, SC and LLMC (with or without reverse osmosis pre-concentration) featured the lowest net cost. The sensitivity analysis highlighted that the consumption of chemicals for nutrient recovery and the ammonium sulphate recovered had a large impact on environmental and economic balances. Overall, these results demonstrate that implementing membrane technologies and SC for nutrient recovery can improve the economic and environmental implications of future municipal wastewater treatment plants.


Asunto(s)
Reactores Biológicos , Purificación del Agua , Estruvita , Análisis Costo-Beneficio , Anaerobiosis
5.
Membranes (Basel) ; 13(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37367784

RESUMEN

This study evaluates a hybrid system combining zeolites as a sorption stage and a hollow fiber membrane contactor (HFMC) for ammonia (NH3) recovery from treated urban wastewater. Ion exchange with zeolites was selected as an advanced pretreatment and concentration step before the HFMC. The system was tested with wastewater treatment plant (WWTP) effluent (mainstream, 50 mg N-NH4/L) and anaerobic digestion centrates (sidestream, 600-800 mg N-NH4/L) from another WWTP. Natural zeolite, primarily clinoptilolite, demonstrated effective desorption of retained ammonium using a 2% NaOH solution in a closed-loop configuration, resulting in an ammonia-rich brine that enabled over 95% NH3 recovery using polypropylene HFMCs. A 1 m3/h demonstration plant processed both urban wastewaters, which were pretreated by ultrafiltration, removing over 90% of suspended solids and 60-65% of COD. The 2% NaOH regeneration brines (2.4-5.6 g N-NH4/L) were treated in a closed-loop HFMC pilot system, producing 10-15% N streams with potential use as liquid fertilizers. The resulting ammonium nitrate was free of heavy metals and organic micropollutants, making it suitable for use as liquid fertilizer. This comprehensive N management solution for urban wastewater applications can contribute to local economies while achieving reduced N discharge and circularity goals.

6.
ACS Sustain Chem Eng ; 11(44): 15975-15983, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37969885

RESUMEN

This article investigates the economic and environmental implications of implementing green ammonia production plants in Spain. To this end, one business-as-usual scenario for gray ammonia production was compared with three green ammonia scenarios powered with different renewable energy sources (i.e., solar photovoltaic (PV), wind, and a combination of solar PV and wind). The results illustrated that green ammonia scenarios reduced the environmental impacts in global warming, stratospheric ozone depletion, and fossil resource scarcity when compared with conventional gray ammonia scenario. Conversely, green ammonia implementation increased the environmental impacts in the categories of land use, mineral resource scarcity, freshwater eutrophication, and terrestrial acidification. The techno-economic analysis revealed that the conventional gray ammonia scenario featured lower costs than green ammonia scenarios when considering a moderate natural gas cost. However, green ammonia implementation became the most economically favorable option when the natural gas cost and carbon prices increased. Finally, the results showed that developing efficient ammonia-fueled systems is important to make green ammonia a relevant energy vector when considering the entire supply chain (production/transportation). Overall, the results of this research demonstrate that green ammonia could play an important role in future decarbonization scenarios.

7.
Sci Total Environ ; 904: 166077, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544447

RESUMEN

Ammonia (NH3), as a prevalent pollutant in municipal wastewater discharges, can impair aquatic life and have a negatively impact on the environment. Proper wastewater treatment and management practices are essential to protect ecosystems and keep human populations healthy. Therefore, using highly effective NH3-N recovery technologies at wastewater treatment plants (WWTPs) is widely acknowledged as a necessity. In order to improve the overall efficiency of NH3 removal/recovery processes, innovative technologies have been generally applied to reduce its concentration when discharged into natural water bodies. This study reviews the current status of the main issues affecting NH3 recovery from municipal/domestic wastewater discharges. The current study investigated the ability to recover valuable resources, e.g., nutrients, regenerated water, and energy in the form of biogas through advanced and innovative methods in tertiary treatment to achieve higher efficiency towards sustainable wastewater and resource recovery facilities (W&RRFs). In addition, the concept of paradigm shifts from WWTP to a large/full scale W&RRF has been studied with several examples of conversion to innovative bio-factories producing materials. On the other hand, the carbon footprint and the high-energy consumption of the WWTPs were also considered to assess the sustainability of these facilities.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Eliminación de Residuos Líquidos/métodos , Ecosistema , Purificación del Agua/métodos , Agua , Aguas del Alcantarillado
8.
Sci Total Environ ; 892: 164452, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37245830

RESUMEN

The recovery of nitrogen and phosphorus is important to promote circular economy in wastewater treatment plants (WWTPs). In this study, the life cycle assessment (LCA) and techno-economic assessment (TEA) of a novel pilot-scale plant aimed at recovering ammonium nitrate and struvite for subsequent application in agriculture was conducted. The nutrient recovery scheme was implemented in the sludge line of the WWTP and included (i) struvite crystallisation and (ii) ion-exchange process combined with gas permeable membrane contactor. The LCA showed that using a fertilizer solution containing the recovered nutrients was environmentally better in most of the impact categories evaluated. Ammonium nitrate was the most important environmental contributor when using the recovered fertilizer solution as a result of the high consumption of chemicals needed for its production. The TEA illustrated that the implementation of the nutrient recovery scheme in the WWTP featured a negative net present value (NPV), primarily attributed to the high consumption of chemicals (representing 30 % of the gross cost). However, the implementation of the nutrient recovery scheme in the WWTP could be economically favourable if the cost of ammonium nitrate and struvite increased to 0.68 and 0.58 €/kg, respectively. The results of this pilot-scale study highlight that nutrient recovery considering the whole value chain for fertilizer application can be an attractive full-scale alternative from a sustainability point of view.


Asunto(s)
Aguas Residuales , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Estruvita , Fertilizantes , Fósforo , Purificación del Agua/métodos , Nutrientes , Agricultura
9.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296870

RESUMEN

A parent Mg-Al-LDH was upgraded in its adsorption properties due to the incorporation of tri-metal species oxy(hydroxide) nanoparticles obtaining Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite for the phosphate recovery from simulated urban treated wastewater. The physicochemical properties of the synthesized Mn2+/Zn2+/Fe3+/Mg-Al-LDH make promising for real application without being environmentally harmful. The performance of Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was evaluated through batch adsorption assays. The support of iron, manganese, and zinc (oxy)hydroxide nanoparticles onto the parent Mg-Al-LDH structure was performed by precipitation, isomorphic substitution, and complexation reactions. The main improvement of the Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was the highest phosphate adsorption capacity (82.3 mg∙g-1) in comparison to the parent Mg-Al-LDH (65.3 mg∙g-1), in a broad range of concentrations and the effective phosphate adsorption at neutral pH (7.5) near to the real wastewater effluents conditions in comparison to the conventional limitations of other adsorbents. The effectiveness of Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was higher than the conventional metal LDHs materials synthesized in a single co-precipitation step. The phosphate adsorption onto Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was described to be governed by both physical and chemical interactions. The support of Mn2+/Zn2+/Fe3+ oxy(hydroxide) nanoparticles over the parent Mg-Al-LDH was a determinant for the improvement of the phosphate adsorption that was governed by complexation, hydrogen bonding, precipitation, and anion exchange. The intra-particular diffusion also described well the phosphate adsorption onto the Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite. Three specific stages of adsorption were determined during the phosphate immobilization with an initial fast rate, followed by the diffusion through the internal pores and the final equilibrium stage, reaching 80% of removal and the equilibrium within 1 h. The Mn2+/Zn2+/Fe3+/Mg-Al-LDH was strongly selective towards phosphate adsorption in presence of competing ions reducing the adsorption capacity at 20%. The Mn2+/Zn2+/Fe3+/Mg-Al-LDH has limited reusability, only 51% of the adsorbed phosphate could be recovered in the second cycle of the adsorption-desorption process. Around 14% of phosphate was loosely-bond to Mn2+/Zn2+/Fe3+/Mg-Al-LDH which brings the opportunity to be a new source of phosphorus. The use of eluted concentrates and the final disposal of the exhausted adsorbent for soil amendment applications can be an integral nutrient system (P, Mn, Zn, Fe) for agriculture purposes.

10.
Sci Total Environ ; 821: 153419, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35092764

RESUMEN

In this work, the evaluation of the life cycle of the service provided by a medium-power motorcycle in a Spanish urban environment was carried out, comparing two motorcycles, a battery electric vehicle (BEV) is compared with an internal combustion engine vehicle (ICEV). The economic study of the total costs of ownership is also carried out considering the environmental costs associated with each type of vehicle. A comprehensive inventory is compiled for both vehicles (motorcycles) that describes the most relevant components and includes two types of batteries for the BEV. A sensitivity analysis of the most impactful parameters is also considered. The results indicate that the ICEV contributes approximately 5 times more in the global warming potential impact category mainly due to the consumption of fossil fuels. The BEV also impacts some categories in the manufacturing stage, a fact that is strongly related to the battery. Sensitivity analysis indicates that the total distance travelled plays an important role, but the electricity mix is probably the most relevant factor in terms of climate change impact category. The economic analysis reported lower environmental externality costs for the BEV, making it more affordable than the ICEV and highlighting the benefit in terms of air pollution. The BEV is presented as a suitable option vehicle from environmental and economic point of view and one of the actors to accelerate the transition towards a more sustainable urban mobility model.


Asunto(s)
Contaminación del Aire , Motocicletas , Animales , Suministros de Energía Eléctrica , Electricidad , Estadios del Ciclo de Vida , Emisiones de Vehículos/análisis
11.
Membranes (Basel) ; 12(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35877865

RESUMEN

Liquid-liquid membrane contactors (LLMCs) were studied as a sustainable technology for ammonia recovery from wastewater. Ammonia can be valorized by LLMCs as a potential nutrient and produce liquid fertilizers. Thus, this work aims for the study of different experimental LLMC conditions to produce ammonium salts by an acid stripping stream. The experiments were conducted using two 3MTMLiqui-CellTM LLMC in a series, located in the vertical position and using HNO3 as the acid stripping solution. The flow rates for the feed and stripping sides were fixed during the tests, and two steps were conducted based on previous works. However, different experimental conditions were evaluated to determine its effect on the overall performance: (i) replacing the feed or stripping solution between the steps, (ii) the initial ammonia concentration of the feed solution, (iii) feed volume and (iv) feed temperature. The results demonstrated that better achievements were obtained replacing the acid stripping solution between steps, whereas the feed temperature did not substantially affect the overall performance. Additionally, a high initial ammonia concentration provided more ammonia recovery, although the concentration factor achieved was higher for the low initial ammonia concentration. Finally, a high feed volume afforded better results for the fertilizer side, whereas more NH3 recovery was achieved using less feed volume.

12.
Materials (Basel) ; 15(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955353

RESUMEN

Hydrothermally synthesized Linde type A (LTA) and faujasite X (FAU-X) zeolites are low-cost and environmentally benign inorganic carriers for environmental applications. In this study, (oxy)hydroxides were incorporated onto LTA and FAU-X zeolites to promote the phosphate adsorption. The performance of LTA-Fe and FAU-X-Fe was evaluated through batch adsorption assays. A complete evaluation was performed to recover phosphate from synthetic wastewater. The effect of pH, concentration, equilibrium, and kinetic parameters on phosphate adsorption and its further reuse in sorption-desorption cycles were evaluated. LTA-Fe and FAU-X-Fe are effective for adsorption of phosphate at neutral (e.g., pH 7.0 ± 0.2) and in a broad range of phosphate concentrations. Higher ratios of adsorption capacities were obtained by synthetic zeolites enriched with iron in comparison to their parent forms. The phosphate adsorption occurred through hydrogen bonding and complexation reactions between protonated iron hydroxyl groups and phosphate anions. The phosphate monolayer adsorption was followed by diffusion through the internal pores and 80% of the equilibrium adsorption was reached within 50 min. The LTA-Fe and FAU-X-Fe can be used for phosphate recovery from wastewater treatment plants. The use of LTA-Fe and FAU-X-Fe in a tertiary wastewater treatment stage could allow to reduce the phosphate-phosphorous content, reaching the regulatory levels (equal 1 mg L-1 total phosphorous). The phosphate adsorption using LTA-Fe and FAU-X-Fe does not require pH adjustment, and it is endothermic. The reusability of both iron zeolites is limited, and they can be finally disposed for soil amendment applications.

13.
Nanomaterials (Basel) ; 12(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36364624

RESUMEN

The development of an efficient adsorbent is required in tertiary wastewater treatment stages to reduce the phosphate-phosphorous content within regulatory levels (1 mg L-1 total phosphorous). In this study, a natural muscovite was used for the preparation of muscovite/zeolite composites and the incorporation of Fe3+/Mn2+ (oxy)hydroxide nanoparticles for the recovery of phosphate from synthetic wastewater. The raw muscovite MC and the obtained muscovite/sodalite composite LMC were used in the powder form for the phosphate adsorption in batch mode. A muscovite/analcime composite was obtained in the pellets PLMCT3 and monolith SLMCT2 forms for the evaluation in fixed-bed mode for continuous operation. The effect of pH, equilibrium and kinetic parameters on phosphate adsorption and its further reuse in sorption-desorption cycles were determined. The characterization of the adsorbents determined the Fe3+ and Mn2+ incorporation into the muscovite/zeolite composite's structure followed the occupancy of the extra-framework octahedral and in the framework tetrahedral sites, precipitation and inner sphere complexation. The adsorbents used in this study (MC, LMC, PLMCT3 and SLMCT2) were effective for the phosphate recovery without pH adjustment requirements for real treated wastewater. Physical (e.g., electrostatic attraction) and chemical (complexation reactions) adsorption occurred between the protonated Fe3+/Mn2+ (oxy)hydroxy groups and phosphate anions. Higher ratios of adsorption capacities were obtained by powder materials (MC and LMC) than the pellets and monoliths forms (PLMCT3 and SLMCT2). The equilibrium adsorption of phosphate was reached within 30 min for powder forms (MC and LMC) and 150 min for pellets and monoliths forms (PLMCT3 and SLMCT2); because the phosphate adsorption was governed by the diffusion through the internal pores. The adsorbents used in this study can be applied for phosphate recovery from wastewater treatment plants in batch or fixed-bed mode with limited reusability. However, they have the edge of environmentally friendly final disposal being promissory materials for soil amendment applications.

14.
Membranes (Basel) ; 12(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557158

RESUMEN

Membrane contactor is a promising technology for ammonia recovery from the anaerobic digestion centrate. However, high suspended solids and dissolved organic matter concentrations can reduce the effectiveness of the technology. In this study, coagulation-flocculation (C/F) and aeration pre-treatments were evaluated to reduce chemical oxygen demand (COD), turbidity, suspended solids and alkalinity before the ammonia recovery stage using a membrane contactor. The mass transfer coefficient (Km) and total ammonia (TAN) recovery efficiency of the membrane contactor increased from 7.80 × 10-7 to 1.04 × 10-5 m/s and from 8 to 67%, respectively, after pre-treating the real sidestream centrate. The pre-treatment results showed that dosing aluminium sulphate (Al2(SO4)3) at 30 mg Al/L was the best strategy for the C/F process, providing COD, turbidity and TSS removal efficiencies of 50 ± 5, 95 ± 3 and 90 ± 4%, respectively. The aeration step reduced 51 ± 6% the HCO3- content and allowed reducing alkaline consumption by increasing the pH before the membrane contactor. The techno-economic evaluation showed that the combination of C/F, aeration and membrane contactor can be economically feasible for ammonia recovery. Overall, the results of this study demonstrate that C/F and aeration are simple and effective techniques to improve membrane contactor performance for nitrogen recovery from the anaerobic digestion centrate.

15.
Membranes (Basel) ; 12(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35877872

RESUMEN

Spinach and orange by-products are well recognized for their health benefits due to the presence of natural polyphenols with antioxidant activity. Therefore, the demand to produce functional products containing polyphenols recovered from vegetables and fruits has increased in the last decade. This work aims to use the integrated membrane process for the recovery of polyphenols from spinach and orange wastes, implemented on a laboratory scale. The clarification (microfiltration and ultrafiltration, i.e., MF and UF), pre-concentration (nanofiltration, NF), and concentration (reverse osmosis, RO) of the spinach and orange extracts were performed using membrane technology. Membrane experiments were carried out by collecting 1 mL of the permeate stream after increasing the flow rate in 1 mL/min steps. The separation and concentration factors were determined by HPLC-DAD in terms of total polyphenol content and by polyphenol families: hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. The results show that the transmembrane flux depended on the feed flow rate for MF, UF, NF, and RO techniques. For the spinach and orange matrices, MF (0.22 µm) could be used to remove suspended solids; UF membranes (30 kDa) for clarification; NF membranes (TFCS) to pre-concentrate; and RO membranes (XLE for spinach and BW30 for orange) to concentrate. A treatment sequence is proposed for the two extracts using a selective membrane train (UF, NF, and RO) to obtain polyphenol-rich streams for food, pharmaceutical, and cosmetic applications, and also to recover clean water streams.

16.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365630

RESUMEN

The use of recycled opaque PET (r-O-PET, with TiO2) as a reinforcement for the recycled polypropylene matrix (r-PP) was evaluated through the life cycle assessment according to different scenarios corresponding to two different recycled blends and considered two virgin raw plastic material as reference materials when comparing the environmental performance of the proposed treatments. The results indicate that the environmental performance was quite different for each blend, since the additional extrusion process required in scenario 2 (blend with TiO2) causes all impact categories analysed to report higher values when compared with scenario 1 (blend without TiO2). The stage that contributes the most corresponds to the different extrusion processes included in both recycling blends, representing at least 80% of the total for global warming. Compared with virgin raw materials, the blend with TiO2 showed better performance in all the impact categories analysed in comparison with virgin PA66, while the blend without TiO2 showed the opposite trend when compared to PP. Furthermore, the fact that the upcycling treatment was carried out on a pilot scale provides room for improvement when implemented on a full scale. It is worth noting the high energy consumption of the treatment processes and their associated cost, in addition to the market cost of virgin raw materials, however, when considering the environmental cost of raw materials, it is observed that when substituting virgin materials PP and PA66 for the blends evaluated in this study results in a reduction of the environmental price of up to 2.5 times.

17.
Antioxidants (Basel) ; 10(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34829670

RESUMEN

Phenolic compounds recovery by mechanical stirring extraction (MSE) was studied from orange and spinach wastes using water as a solvent. The statistical analysis showed that the highest total polyphenol content (TPC) yield was obtained using 15 min, 70 °C, 1:100 (w/v) solid/solvent ratio and pH 4 for orange; and 5 min, 50 °C, 1:50 (w/v) solid/solvent ratio and pH 6 for spinach. Under these conditions, the TPC was 1 mg gallic acid equivalent (GAE) g-1 fresh weight (fw) and 0.8 mg GAE g-1 fw for orange and spinach, respectively. MSE substantially increased the phenolic compounds yields (1-fold for orange and 2-fold for spinach) compared with ultrasound-assisted extraction. Furthermore, the antioxidant activity of orange and spinach extracts was evaluated using DPPH, FRAP and ABTS. The obtained results pointed out that the evaluated orange and spinach residues provided extracts with antioxidant activity (2.27 mg TE g-1 and 0.04 mg TE g-1, respectively).

18.
Sci Total Environ ; 801: 149719, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34438146

RESUMEN

Fruits, vegetables, spices, and herbs are a potential source of phenolic acids and polyphenols. These compounds are known as natural by-products or secondary metabolites of plants, which are present in the daily diet and provide important benefits to the human body such as antioxidant, anti-inflammatory, anticancer, anti-allergic, antihypertensive and antiviral properties, among others. Plentiful evidence has been provided on the great potential of polyphenols against different viruses that cause widespread health problems. As a result, this review focuses on the potential antiviral properties of some polyphenols and their action mechanism against various types of viruses such as coronaviruses, influenza, herpes simplex, dengue fever, and rotavirus, among others. Also, it is important to highlight the relationship between antiviral and antioxidant activities that can contribute to the protection of cells and tissues of the human body. The wide variety of action mechanisms of antiviral agents, such as polyphenols, against viral infections could be applied as a treatment or prevention strategy; but at the same time, antiviral polyphenols could be used to produce natural antiviral drugs. A recent example of an antiviral polyphenol application deals with the use of hesperidin extracted from Citrus sinensis. The action mechanism of hesperidin relies on its binding to the key entry or spike protein of SARS-CoV-2. Finally, the extraction, purification and recovery of polyphenols with potential antiviral activity, which are essential for virus replication and infection without side-effects, have been critically reviewed.


Asunto(s)
COVID-19 , Virosis , Antioxidantes , Antivirales , Humanos , Polifenoles , SARS-CoV-2 , Virosis/tratamiento farmacológico , Virosis/prevención & control
19.
Sci Total Environ ; 727: 138646, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32330722

RESUMEN

The usefulness of a nutrient-enriched zeolite (NEZ) obtained from simultaneous ammonium (NH4+) and phosphate (PO43-) recovery from urban wastewaters was evaluated as soil amendment through the early growth of sunflower (Helianthus annuus). The NEZ systems were applied to sandy (acid) and clayey (basic) soils from Mediterranean agricultural areas (Spain). Some plant growth indicators were measured: evapotranspiration, plant moisture content, plant biomass, root/shoot ratio, nitrogen and phosphorous uptake and the C/N ratio. The experimental data exhibited differences in the growth indicators for un-amended and amended soils. The addition of the NEZ system increase the plant water content of sunflowers grown on clay soils. The plant biomass of sunflower was improved by the incorporation of NEZ system in all treatments for the two soils studied. A reduction of the root/shoot ratio for the treatments of clay soil by application of NEZ systems were observed. The content of ammonium and phosphorous in tissues increased considerably with the addition of amendment material. Besides, the ammonium, nitrate and inorganic phosphorous in the post-test soils revealed that nutrients were still available for a second growth cycle. As demonstrated in previous work, the NEZ system releases nutrients continuously controlled by soil pH and mineral composition as well as the irrigation conditions provided. Therefore, this approach of amendment materials for soil seems to be a promising alternative for agricultural practice, where the dose selection must be balanced according to the plant's nutrient needs and soil properties by adjusting the growth conditions.


Asunto(s)
Contaminantes del Suelo/análisis , Zeolitas , Biomasa , Nutrientes , Suelo , España , Aguas Residuales
20.
Sci Total Environ ; 731: 139002, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32417474

RESUMEN

The sorption of phosphate by K-zeolites synthesized from fly ash (FA) by hydrothermal conversion is investigated in this study. The aim is the synthesis of Ca bearing K-zeolites to recover phosphate from urban and industrial wastewater effluents. The loaded zeolites are considered as a by-products rich in essential nutrients such K and P (KP1) with a potential use as slow release fertilizer. A number of synthesis conditions (temperature, KOH-solution/FA ratio, KOH concentration, and activation time) were applied on two FA samples (FA-TE and FA-LB) with similar glass content but different content of crystalline phases, to optimize the synthesis of a zeolitic sorbent suitable for the subsequent phosphate uptake. Merlinoite and W rich zeolitic products synthesized from FA-LB and FA-TE were found to have sorption properties for phosphate removal. A maximum phosphate sorption capacity of 250 mgP-PO4/g and 142 mgP-PO4/g for the zeolitic products selected (KP1-LB and KP1-TE, respectively) was achieved. The dominant phosphate sorption mechanism, in the pH range (6-9) of treated wastewater effluents, indicated that sorption proceeds via a diffusion-controlled process involving phosphate ions coupled with calcium supply dissolution from K-zeolitic products and subsequent formation of brushite (CaHPO4 2H2O(s)). The phosphate loaded sorbent containing a relatively soluble phosphate mineral is appropriate for its use as a synthetic slow release fertilizer. The simultaneous valorisation of fly ash waste and the P recovery from treated wastewaters effluents, (a nutrient with scarce natural resources and low supply) by obtaining a product with high potential for land restoration and agriculture will contribute to develop one example of circularity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA