Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(4): 6143-6155, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823878

RESUMEN

Among the racking elements of bifacial photovoltaic (PV) single-axis tracked systems, the torque tube (TT) introduces the most shading and reflection, increasing irradiance nonuniformity and electrical mismatch loss. We simulate the impact of TT shading and reflection on the irradiance profiles, electrical mismatch, and energy yield for central bifacial PV modules on one-in-portrait (1P) and two-in-portrait (2P) single-axis trackers. TT reflection increases annual irradiance in 1P and 2P systems by 0.17% and 0.30%, respectively. Overall, TT reflection increases the predicted instantaneous energy yield by up to 0.8% and 0.4%, and the annual energy yield by 0.11% and 0.18% in 1P and 2P systems, respectively.

2.
Opt Express ; 30(13): 23417-23427, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225021

RESUMEN

We designed and optimized ultra-thin single junction InAlGaAs photonic power converters (PPC) with integrated back reflectors (BR) for operation at the telecommunications wavelength of 1310 nm and numerically studied the light trapping capability of three BR types: planar, cubic nano-textured, and pyramidal nano-textured. The PPC and BR geometries were optimized to absorb a fixed percentage of the incident light at the target wavelength by coupling finite difference time-domain (FDTD) calculations with a particle swarm optimization. With 90% absorptance, opto-electrical simulations revealed that ultra-thin PPCs with 5.6- to 8.4-fold thinner absorber layers can have open circuit voltages (Voc) that are 9-12% larger and power conversion efficiencies (PCE) that are 9-10% (relative) larger than conventional thick PPCs. Compared to a thick PPC with 98% absorptance, these ultra-thin designs reduce the absorber layer thickness by 9.5-14.2 times while improving the Voc by 12-14% and resulting in a relative PCE enhancement of 3-4%. Of the studied BR designs, pyramidal BRs exhibit the highest performance for ultra-thin designs, reaching an efficiency of 43.2% with 90% absorptance, demonstrating the superior light trapping capability relative to planar and cubic nano-textured BRs.

3.
Nanotechnology ; 29(21): 215701, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29504511

RESUMEN

Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10-3) Ω-1 cm-1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10-3 Ω-1 cm-1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA