Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pain ; 14: 1744806917749669, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29212407

RESUMEN

Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.


Asunto(s)
Dependovirus/metabolismo , Ganglios Espinales/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Transferencia de Gen , Vectores Genéticos/metabolismo , Canal de Potasio KCNQ2/metabolismo , Neuronas/metabolismo , Interferencia de ARN , Potenciales de Acción/efectos de los fármacos , Animales , Benzamidas/farmacología , Células Cultivadas , Fluorescencia , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Neuronas/efectos de los fármacos , Piridinas/farmacología , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Serotipificación , Factores de Tiempo
2.
Pain ; 164(8): 1718-1733, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36727909

RESUMEN

ABSTRACT: Induced pluripotent stem cells (iPSCs) have enabled the generation of various difficult-to-access cell types such as human nociceptors. A key challenge associated with human iPSC-derived nociceptors (hiPSCdNs) is their prolonged functional maturation. While numerous studies have addressed the expression of classic neuronal markers and ion channels in hiPSCdNs, the temporal development of key signaling cascades regulating nociceptor activity has remained largely unexplored. In this study, we used an immunocytochemical high-content imaging approach alongside electrophysiological staging to assess metabotropic and ionotropic signaling of large scale-generated hiPSCdNs across 70 days of in vitro differentiation. During this period, the resting membrane potential became more hyperpolarized, while rheobase, action potential peak amplitude, and membrane capacitance increased. After 70 days, hiPSCdNs exhibited robust physiological responses induced by GABA, pH shift, ATP, and capsaicin. Direct activation of protein kinase A type II (PKA-II) through adenylyl cyclase stimulation with forskolin resulted in PKA-II activation at all time points. Depolarization-induced activation of PKA-II emerged after 35 days of differentiation. However, effective inhibition of forskolin-induced PKA-II activation by opioid receptor agonists required 70 days of in vitro differentiation. Our results identify a pronounced time difference between early expression of functionally important ion channels and emergence of regulatory metabotropic sensitizing and desensitizing signaling only at advanced stages of in vitro cultivation, suggesting an independent regulation of ionotropic and metabotropic signaling. These data are relevant for devising future studies into the development and regulation of human nociceptor function and for defining time windows suitable for hiPSCdN-based drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Analgésicos Opioides , Colforsina/farmacología , Nocicepción , Células Receptoras Sensoriales , Canales Iónicos
3.
J Pharmacol Toxicol Methods ; 103: 106693, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32276047

RESUMEN

INTRODUCTION: Development of agonistic analgesic drugs requires proof of selectivity in vivo attainable by selective antagonists or several knockdown strategies. The Kv7.2 potassium channel encoded by the KCNQ2 gene regulates neuronal excitability and its activation inhibits nociceptive transmission. Although it is a potentially attractive target for analgesics, no clinically approved Kv7.2 agonists are currently available and selectivity of drug candidates is hard to demonstrate in vivo due to the expenditure to generate KCNQ2 knockout animals and the lack of Kv7.2 selective antagonists. The present study describes the set-up of an RNA interference-based model that allows studying the selectivity of Kv7.2 openers. METHODS: Adeno-associated virus (AAV) vectors were used to deliver the expression cassette for a short hairpin RNA targeting KCNQ2. Heat nociception was tested in rats after intrathecal AAV treatment. RESULTS: Surprisingly, screening of AAV serotypes revealed serotype 7, which has rarely been explored, to be best suited for transduction of dorsal root ganglia neurons following intrathecal injection. Knockdown of the target gene was confirmed by qRT-PCR and the anti-nociceptive effect of a Kv7.2 agonist was found to be completely abolished by the treatment. DISCUSSION: We consider this approach not only to be suitable to study the selectivity of novel analgesic drugs targeting Kv7.2, but rather to serve as a general fast and simple method to generate functional and phenotypic knockdown animals during drug discovery for central and peripheral pain targets.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Analgésicos , Animales , Benzamidas , Técnicas de Silenciamiento del Gen , Masculino , Neuronas , Nociceptores , Piridinas , Interferencia de ARN , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA