Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Transl Sci ; 17(9): e70012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258521

RESUMEN

Futibatinib, an inhibitor of fibroblast growth factor receptor 1-4, is approved for the treatment of patients with advanced cholangiocarcinoma with FGFR2 fusions/rearrangements. In this phase I drug-drug interaction study, the effects of futibatinib on P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) substrates, and of P-gp inhibition on futibatinib pharmacokinetics (PK) were investigated in healthy adults aged 18-55 years. In part 1, 20 participants received digoxin (P-gp substrate) and rosuvastatin (BCRP substrate). Following a ≥10-day washout, futibatinib was administered for 7 days, with digoxin and rosuvastatin coadministered on the third day. In part 2, 24 participants received futibatinib. Following a ≥3-day washout, quinidine (P-gp inhibitor) was administered for 4 days, with futibatinib coadministered on day 4. Blood samples were collected predose and for 24 (futibatinib), 72 (rosuvastatin), and 120 h (digoxin) postdose. Urine samples (digoxin) were collected predose and for 120 h postdose. PK parameters were compared between treatments using analysis of variance. Coadministration with futibatinib had no effect on the PK of digoxin and rosuvastatin, and coadministration with quinidine had minimal effects on the PK of futibatinib. Differences in Cmax and AUC with and without futibatinib and quinidine, respectively, were <20%. The most common treatment-emergent adverse events were diarrhea (80%) and increased blood phosphorous (75%) in part 1 and prolonged electrocardiogram QT interval (38%) in part 2. The data show that futibatinib has no clinically meaningful effects on the PK of P-gp or BCRP substrates and that the effect of P-gp inhibition on futibatinib PK is not clinically relevant.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Digoxina , Interacciones Farmacológicas , Proteínas de Neoplasias , Rosuvastatina Cálcica , Humanos , Adulto , Masculino , Femenino , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Persona de Mediana Edad , Adulto Joven , Rosuvastatina Cálcica/farmacocinética , Rosuvastatina Cálcica/administración & dosificación , Adolescente , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Digoxina/farmacocinética , Digoxina/administración & dosificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Voluntarios Sanos , Área Bajo la Curva , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
2.
aBIOTECH ; 5(2): 169-183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974857

RESUMEN

Robust genome editing technologies are becoming part of the crop breeding toolbox. Currently, genome editing is usually conducted either at a single locus, or multiple loci, in a variety at one time. Massively parallel genomics platforms, multifaceted genome editing capabilities, and flexible transformation systems enable targeted variation at nearly any locus, across the spectrum of genotypes within a species. We demonstrate here the simultaneous transformation and editing of many genotypes, by targeting mixed seed embryo explants with genome editing machinery, followed by re-identification through genotyping after plant regeneration. Transformation and Editing of Mixed Lines (TREDMIL) produced transformed individuals representing 101 of 104 (97%) mixed elite genotypes in soybean; and 22 of 40 (55%) and 9 of 36 (25%) mixed maize female and male elite inbred genotypes, respectively. Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1 (Dt1) locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3 (Bm3) edits in samples from 17 maize genotypes. These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00173-5.

3.
Front Plant Sci ; 8: 692, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559898

RESUMEN

Soybean [Glycine max (L.) Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2), to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME) in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA