Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Methods ; 16(8): 750-756, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31363221

RESUMEN

The Drosophila wing disc has been a fundamental model system for the discovery of key signaling pathways and for our understanding of developmental processes. However, a complete map of gene expression in this tissue is lacking. To obtain a gene expression atlas in the wing disc, we employed single cell RNA sequencing (scRNA-seq) and developed a method for analyzing scRNA-seq data based on gene expression correlations rather than cell mapping. This enables us to compute expression maps for all detected genes in the wing disc and to discover 824 genes with spatially restricted expression patterns. This approach identifies clusters of genes with similar expression patterns and functional relevance. As proof of concept, we characterize the previously unstudied gene CG5151 and show that it regulates Wnt signaling. Our method will enable the leveraging of scRNA-seq data for generating expression atlases of undifferentiated tissues during development.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Alas de Animales/metabolismo , Algoritmos , Animales , Drosophila/embriología , Embrión no Mamífero/citología , Femenino , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Alas de Animales/embriología
2.
Nucleic Acids Res ; 43(Database issue): D357-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25352555

RESUMEN

Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands.


Asunto(s)
Bases de Datos de Compuestos Químicos , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Internet , Sustancias Macromoleculares/química
3.
RNA Biol ; 13(10): 973-987, 2016 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-27471797

RESUMEN

G-quadruplexes have recently moved into focus of research in nucleic acids, thereby evolving in scientific significance from exceptional secondary structure motifs to complex modulators of gene regulation. Aptamers (nucleic acid based ligands with recognition properties for a specific target) that form Gquadruplexes may have particular potential for therapeutic applications as they combine the characteristics of specific targeting and Gquadruplex mediated stability and regulation. We have investigated the structure and target interaction properties of one such aptamer: AIR-3 and its truncated form AIR-3A. These RNA aptamers are specific for human interleukin-6 receptor (hIL-6R), a key player in inflammatory diseases and cancer, and have recently been exploited for in vitro drug delivery studies. With the aim to resolve the RNA structure, global shape, RNA:protein interaction site and binding stoichiometry, we now investigated AIR-3 and AIR-3A by different methods including RNA structure probing, Small Angle X-ray scattering and microscale thermophoresis. Our findings suggest a broader spectrum of folding species than assumed so far and remarkable tolerance toward different modifications. Mass spectrometry based binding site analysis, supported by molecular modeling and docking studies propose a general Gquadruplex affinity for the target molecule hIL-6R.

4.
Nucleic Acids Res ; 42(Database issue): D326-35, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24174539

RESUMEN

The goal of pE-DB (http://pedb.vib.be) is to serve as an openly accessible database for the deposition of structural ensembles of intrinsically disordered proteins (IDPs) and of denatured proteins based on nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and other data measured in solution. Owing to the inherent flexibility of IDPs, solution techniques are particularly appropriate for characterizing their biophysical properties, and structural ensembles in agreement with these data provide a convenient tool for describing the underlying conformational sampling. Database entries consist of (i) primary experimental data with descriptions of the acquisition methods and algorithms used for the ensemble calculations, and (ii) the structural ensembles consistent with these data, provided as a set of models in a Protein Data Bank format. PE-DB is open for submissions from the community, and is intended as a forum for disseminating the structural ensembles and the methodologies used to generate them. While the need to represent the IDP structures is clear, methods for determining and evaluating the structural ensembles are still evolving. The availability of the pE-DB database is expected to promote the development of new modeling methods and leads to a better understanding of how function arises from disordered states.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Desplegamiento Proteico , Internet , Resonancia Magnética Nuclear Biomolecular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
RNA Biol ; 12(9): 1043-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26383776

RESUMEN

Aptamers are an emerging class of highly specific targeting ligands. They can be selected in vitro for a large variety of targets, ranging from small molecules to whole cells. Most aptamers selected are nucleic acid-based, allowing chemical synthesis and easy modification. Although their properties make them interesting drug candidates for a broad spectrum of applications and an interesting alternative to antibodies or fusion proteins, they are not yet broadly used. One major drawback of aptamers is their susceptibility to abundant serum nucleases, resulting in their fast degradation in biological fluids. Using modified nucleic acids has become a common strategy to overcome these disadvantages, greatly increasing their half-life under cell culture conditions or even in vivo. Whereas pre-selective modifications of the initial library for aptamer selection are relatively easy to obtain, post-selective modifications of already selected aptamers are still generally very labor-intensive and often compromise the aptamers ability to bind its target molecule. Here we report the selection, characterization and post-selective modification of a 34 nucleotide (nt) RNA aptamer for a non-dominant, novel target site (domain 3) of the interleukin-6 receptor (IL-6R). We performed structural analyses and investigated the affinity of the aptamer to the membrane-bound and soluble forms (sIL-6R) of the IL-6R. Further, we performed structural analyses of the aptamer in solution using small-angle X-ray scattering and determined its overall shape and oligomeric state. Post-selective exchange of all pyrimidines against their 2'-fluoro analogs increased the aptamers stability significantly without compromising its affinity for the target protein. The resulting modified aptamer could be shortened to its minimal binding motif without loss of affinity.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Receptores de Interleucina-6/metabolismo , Animales , Aptámeros de Nucleótidos/química , Sitios de Unión , Línea Celular , Humanos , Interleucina-6/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Interleucina-6/química , Técnica SELEX de Producción de Aptámeros
6.
Adv Exp Med Biol ; 870: 261-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26387105

RESUMEN

Small-angle X-ray scattering (SAXS) is a powerful structural method allowing one to study the structure, folding state and flexibility of native particles and complexes in solution and to rapidly analyze structural changes in response to variations in external conditions. New high brilliance sources and novel data analysis methods significantly enhanced resolution and reliability of structural models provided by the technique. Automation of the SAXS experiment, data processing and interpretation make solution SAXS a streamline tool for large scale structural studies in molecular biology. The method provides low resolution macromolecular shapes ab initio and is readily combined with other structural and biochemical techniques in integrative studies. Very importantly, SAXS is sensitive to macromolecular flexibility being one of the few structural techniques applicable to flexible systems and intrinsically disordered proteins (IDPs). A major recent development is the use of SAXS to study particle dynamics in solution by ensemble approaches, which allow one to quantitatively characterize flexible systems. Of special interest is the joint use of SAXS with solution NMR, given that both methods yield highly complementary structural information, in particular, for IDPs. In this chapter, we present the basics of SAXS and also consider protocols of the experiment and data analysis for different scenarios depending on the type of the studied object. These include ab initio shape reconstruction, validation of available high resolution structures and rigid body modelling for folded macromolecules and also characterisation of flexible proteins with the ensemble methods. The methods are illustrated by examples of recent applications and further perspectives of the integrative use of SAXS with NMR in the studies of IDPs are discussed.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Conformación Proteica
7.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37494060

RESUMEN

Single-cell RNA sequencing has become an important method to identify cell types, delineate the trajectories of cell differentiation in whole organisms, and understand the heterogeneity in cellular responses. Nevertheless, sample collection and processing remain a severe bottleneck for single-cell RNA sequencing experiments. Cell isolation protocols often lead to significant changes in the transcriptomes of cells, requiring novel methods to preserve cell states. Here, we developed and benchmarked protocols using glyoxal as a fixative for single-cell RNA sequencing applications. Using Drop-seq methodology, we detected a large number of transcripts and genes from glyoxal-fixed Drosophila cells after single-cell RNA sequencing. The effective glyoxal fixation of transcriptomes in Drosophila and human cells was further supported by a high correlation of gene expression data between glyoxal-fixed and unfixed samples. Accordingly, we also found highly expressed genes overlapping to a large extent between experimental conditions. These results indicated that our fixation protocol did not induce considerable changes in gene expression and conserved the transcriptome for subsequent single-cell isolation procedures. In conclusion, we present glyoxal as a suitable fixative for Drosophila cells and potentially cells of other species that allow high-quality single-cell RNA sequencing applications.


Asunto(s)
Glioxal , Transcriptoma , Animales , Humanos , Fijadores , Drosophila/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , ARN , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Dev Cell ; 58(24): 2914-2929.e7, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113852

RESUMEN

Low-grade chronic inflammation is a hallmark of ageing, associated with impaired tissue function and disease development. However, how cell-intrinsic and -extrinsic factors collectively establish this phenotype, termed inflammaging, remains poorly understood. We addressed this question in the mouse intestinal epithelium, using mouse organoid cultures to dissect stem cell-intrinsic and -extrinsic sources of inflammaging. At the single-cell level, we found that inflammaging is established differently along the crypt-villus axis, with aged intestinal stem cells (ISCs) strongly upregulating major histocompatibility complex class II (MHC-II) genes. Importantly, the inflammaging phenotype was stably propagated by aged ISCs in organoid cultures and associated with increased chromatin accessibility at inflammation-associated loci in vivo and ex vivo, indicating cell-intrinsic inflammatory memory. Mechanistically, we show that the expression of inflammatory genes is dependent on STAT1 signaling. Together, our data identify that intestinal inflammaging in mice is promoted by a cell-intrinsic mechanism, stably propagated by ISCs, and associated with a disbalance in immune homeostasis.


Asunto(s)
Mucosa Intestinal , Intestinos , Ratones , Animales , Células Madre , Fenotipo , Inflamación
9.
Nat Commun ; 13(1): 3135, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668108

RESUMEN

Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling of human diseases. They have heterogeneous morphologies with unclear biological causes and relationship to treatment response. Here, we use high-throughput, image-based profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after treatment with >500 small molecules. Integration of data using multi-omics modeling identifies axes of morphological variation across organoids: Organoid size is linked to IGF1 receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5 + stemness. Treatment-induced organoid morphology reflects organoid viability, drug mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic reorganization of organoids and increases expression of LGR5, while inhibition of mTOR induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for colorectal cancer organoid morphology, their underlying biological mechanisms, and pharmacological interventions with the ability to move organoids along them.


Asunto(s)
Neoplasias Colorrectales , Organoides , Neoplasias Colorrectales/genética , Humanos , Organoides/patología , Fenotipo , Transducción de Señal
10.
Dev Cell ; 56(13): 1884-1899.e5, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34197724

RESUMEN

Tissue homeostasis is achieved by balancing stem cell maintenance, cell proliferation and differentiation, as well as the purging of damaged cells. Elimination of unfit cells maintains tissue health; however, the underlying mechanisms driving competitive growth when homeostasis fails, for example, during tumorigenesis, remain largely unresolved. Here, using a Drosophila intestinal model, we find that tumor cells outcompete nearby enterocytes (ECs) by influencing cell adhesion and contractility. This process relies on activating the immune-responsive Relish/NF-κB pathway to induce EC delamination and requires a JNK-dependent transcriptional upregulation of the peptidoglycan recognition protein PGRP-LA. Consequently, in organisms with impaired PGRP-LA function, tumor growth is delayed and lifespan extended. Our study identifies a non-cell-autonomous role for a JNK/PGRP-LA/Relish signaling axis in mediating death of neighboring normal cells to facilitate tumor growth. We propose that intestinal tumors "hijack" innate immune signaling to eliminate enterocytes in order to support their own growth.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Inmunidad Innata/genética , MAP Quinasa Quinasa 4/genética , Neoplasias/genética , Factores de Transcripción/genética , Animales , Adhesión Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Enterocitos/metabolismo , Enterocitos/patología , Humanos , Intestinos/crecimiento & desarrollo , Intestinos/patología , Mecanotransducción Celular/genética , FN-kappa B/genética , Neoplasias/patología , Transducción de Señal/genética , Microambiente Tumoral/genética
11.
Int J Biol Macromol ; 193(Pt A): 401-413, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673109

RESUMEN

The trimeric CCAAT-binding NF-Y is a "pioneer" Transcription Factor -TF- known to cooperate with neighboring TFs to regulate gene expression. Genome-wide analyses detected a precise stereo-alignment -10/12 bp- of CCAAT with E-box elements and corresponding colocalization of NF-Y with basic-Helix-Loop-Helix (bHLH) TFs. We dissected here NF-Y interactions with USF1 and MAX. USF1, but not MAX, cooperates in DNA binding with NF-Y. NF-Y and USF1 synergize to activate target promoters. Reconstruction of complexes by structural means shows independent DNA binding of MAX, whereas USF1 has extended contacts with NF-Y, involving the USR, a USF-specific amino acid sequence stretch required for trans-activation. The USR is an intrinsically disordered domain and adopts different conformations based on E-box-CCAAT distances. Deletion of the USR abolishes cooperative DNA binding with NF-Y. Our data indicate that the functionality of certain unstructured domains involves adapting to small variation in stereo-alignments of the multimeric TFs sites.


Asunto(s)
ADN/metabolismo , Factores Estimuladores hacia 5'/metabolismo , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos
12.
Clin Transl Gastroenterol ; 11(7): e00212, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32764203

RESUMEN

INTRODUCTION: Colorectal cancer arises in a multistep process of carcinogenesis from normal mucosa. The earliest precursor might be a morphologically inconspicuous precancerous field, harboring cancer-associated mutations. METHODS: We systematically analyzed genetic alterations in 77 tissue samples from 30 patients with sporadic colorectal neoplasms (18 large adenomas and 12 adenocarcinomas) and matched adjacent normal mucosa (N = 30), as well as normal rectal tissue (N = 17). We profiled mutations associated with colorectal cancer by targeted sequencing of 46 genetic loci using 157 custom amplicons and a median depth of 42,655 reads per loci. RESULTS: Multiple mutations were found in colorectal neoplasms, most frequently in APC, KRAS, and TP53. In a subgroup of 11 of 30 patients, alterations were also detected in non-neoplastic mucosa. These mutations were divergent from those in matched neoplasms. The total alteration count and the allele frequency of mutations were higher in neoplasms compared with those in adjacent tissues. We found that younger patients (≤70 years) are less likely affected by mutations in non-neoplastic mucosa than older patients (>70 years, P = 0.013), although no association was found for other variables, including type, location and differentiation of neoplasia, and previous history of polyps. DISCUSSION: Our data show that cancer-associated mutations can be found in non-neoplastic tissues in a subgroup of patients with colorectal neoplasms. Further studies are needed to specify the risk of occurrence and recurrence of neoplasia in this patient population.


Asunto(s)
Adenocarcinoma/genética , Adenoma/genética , Pólipos del Colon/epidemiología , Neoplasias Colorrectales/genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma/epidemiología , Adenocarcinoma/patología , Adenoma/epidemiología , Adenoma/patología , Factores de Edad , Anciano , Biopsia , Estudios de Cohortes , Colon/patología , Pólipos del Colon/genética , Pólipos del Colon/patología , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/patología , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mucosa Intestinal/patología , Masculino , Mutación , Recurrencia Local de Neoplasia/epidemiología , Recurrencia Local de Neoplasia/patología , Medición de Riesgo/métodos , Factores de Riesgo
13.
Elife ; 92020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32053108

RESUMEN

Genetic screens are powerful tools for the functional annotation of genomes. In the context of multicellular organisms, interrogation of gene function is greatly facilitated by methods that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target genes in a constitutive or conditional manner. The library consists currently of more than 2600 plasmids and 1700 fly lines with a focus on targeting kinases, phosphatases and transcription factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that conditional CRISPR mutagenesis is robust across many target genes and can be efficiently employed in various somatic tissues, as well as the germline. In order to prevent artefacts commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in any metazoan organism, which further supported the high efficiency and accuracy of our library and revealed many so far uncharacterized genes essential for development.


Twenty years after the release of the sequence of the human genome, the role of many genes is still unknown. This is partly because some of these genes may only be active in specific types of cells or for short periods of time, which makes them difficult to study. A powerful way to gather information about human genes is to examine their equivalents in 'model' animals such as fruit flies. Researchers can use genetic methods to create strains of insects where genes are deactivated; evaluating the impact of these manipulations on the animals helps to understand the roles of the defunct genes. However, the current methods struggle to easily delete target genes, especially only in certain cells, or at precise times. Here, Port et al. genetically engineered flies that carry CRISPR-Cas9, a biological system that can be programmed to 'cut' and mutate precise genetic sequences. The insects were also manipulated in such a way that the CRISPR elements could be switched on at will, and their quantity finely tuned. This work resulted in a collection of more than 1,700 fruit fly strains in which specific genes could be deactivated on demand in precise cells. Further experiments confirmed that this CRISPR system could mutate target genes in different parts of the fly, including in the eyes, gut and wings. Port et al. have made their collection of genetically engineered fruit flies publically available, so that other researchers can use the strains in their experiments. The CRISPR technology they refined and developed may also lay the foundation for similar collections in other model organisms.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edición Génica/métodos , Animales , Animales Modificados Genéticamente , ARN/genética
14.
J Biotechnol ; 261: 63-69, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-28625679

RESUMEN

Genetic screens are powerful tools to identify components that make up biological systems. Perturbations introduced by methods such as RNA interference (RNAi) or CRISPR/Cas9-mediated genome editing lead to biological phenotypes that can be examined to understand the molecular function of genes in the cell. Over the years, many of such experiments have been conducted providing a wealth of knowledge about genotype-to-phenotype relationships. These data are a rich source of information and it is in a common interest to make them available in a simplified and integrated format. Thus, an important challenge is that genetic screening data can be stored in databases in standardized ways, allowing users to gain new biological insights through data mining and integrated analyses. Here, we provide an overview of available phenotype databases for human cells. We review in detail two databases for high-throughput screens, GenomeRNAi and GenomeCRISPR, and describe how these resources are integrated into the German Network for Bioinformatics Infrastructure de.NBI as part of the European infrastructure for life-science information ELIXIR.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Pruebas Genéticas , Técnicas Citológicas , Humanos , Fenotipo
15.
FEBS J ; 283(16): 3134-54, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27390177

RESUMEN

UNLABELLED: Transcription factors are known to modify the DNA that they bind. However, DNA can also serve as an allosteric ligand whose binding modifies the conformation of transcriptional regulators. Here, we describe how heterodimer PBX1:PREP1, formed by proteins playing major roles in embryonic development and tumorigenesis, undergoes an allosteric transition upon DNA binding. We demonstrate through a number of biochemical and biophysical methods that PBX1:PREP1 exhibits a structural change upon DNA binding. Small-angle X-ray scattering (SAXS), circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis demonstrate a different shape, α-helical content, thermodynamic behavior, and solution environment of the holo-complex (with DNA) compared to the apo-complex (without DNA). Given that PBX1 as such does not have a defined DNA selectivity, structural changes upon DNA binding become major factors in the function of the PBX1:PREP1 complex. The observed changes are mapped at both the amino- and carboxy-terminal regions of the two proteins thereby providing important insights to determine how PBX1:PREP1 dimer functions. DATABASE: Small-angle scattering data are available in SASBDB under accession numbers SASDAP7, SASDAQ7, and SASDAR7.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/metabolismo , Proteínas de Homeodominio/química , Factores de Transcripción/química , Regulación Alostérica , ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Eliminación de Secuencia , Termodinámica , Factores de Transcripción/metabolismo
16.
Structure ; 23(1): 80-92, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25533489

RESUMEN

Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, but how these reader modules recognize site-specific histone tails has remained elusive. Here, we report crystal structures of PHD zinc finger and bromodomains from human TIP5 and BAZ2B in free form and bound to H3 and/or H4 histones. PHD finger functions as an independent structural module in recognizing unmodified H3 histone tails, and the bromodomain prefers H3 and H4 acetylation marks followed by a key basic residue, KacXXR. Further low-resolution analyses of PHD-bromodomain modules provide molecular insights into their trans histone tail recognition, required for nucleosome recruitment and transcriptional repression of the NoRC complex.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Proteínas Cromosómicas no Histona/química , Histonas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA