Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(9): 1276-1285, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844279

RESUMEN

Ab-mediated rejection of organ transplants remains a stubborn, frequent problem affecting patient quality of life, graft function, and grant survival, and for which few efficacious therapies currently exist. Although the field has gained considerable knowledge over the last two decades on how anti-HLA Abs cause acute tissue injury and promote inflammation, there has been a gap in linking these effects with the chronic inflammation, vascular remodeling, and persistent alloimmunity that leads to deterioration of graft function over the long term. This review will discuss new data emerging over the last 5 y that provide clues into how ongoing Ab-endothelial cell interactions may shape vascular fate and propagate alloimmunity in organ transplants.


Asunto(s)
Células Endoteliales , Calidad de Vida , Humanos , Rechazo de Injerto , Anticuerpos , Inflamación , Antígenos HLA
2.
Am J Transplant ; 24(7): 1146-1160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38219867

RESUMEN

Cardiac allograft vasculopathy (CAV) causes late graft failure and mortality after heart transplantation. Donor-specific antibodies (DSAs) lead to chronic endothelial cell injury, inflammation, and arterial intimal thickening. In this study, GeoMx digital spatial profiling was used to analyze arterial areas of interest (AOIs) from CAV+DSA+ rejected cardiac allografts (N = 3; 22 AOIs total). AOIs were categorized based on CAV neointimal thickening and underwent whole transcriptome and protein profiling. By comparing our transcriptomic data with that of healthy control vessels of rapid autopsy myocardial tissue, we pinpointed specific pathways and transcripts indicative of heightened inflammatory profiles in CAV lesions. Moreover, we identified protein and transcriptomic signatures distinguishing CAV lesions exhibiting low and high neointimal lesions. AOIs with low neointima showed increased markers for activated inflammatory infiltrates, endothelial cell activation transcripts, and gene modules involved in metalloproteinase activation and TP53 regulation of caspases. Inflammatory and apoptotic proteins correlated with inflammatory modules in low neointima AOIs. High neointima AOIs exhibited elevated TGFß-regulated transcripts and modules enriched for platelet activation/aggregation. Proteins associated with growth factors/survival correlated with modules enriched for proliferation/repair in high neointima AOIs. Our findings reveal novel insight into immunological mechanisms mediating CAV pathogenesis.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , Trasplante de Corazón/efectos adversos , Rechazo de Injerto/etiología , Rechazo de Injerto/patología , Rechazo de Injerto/inmunología , Humanos , Masculino , Aloinjertos , Isoanticuerpos/inmunología , Persona de Mediana Edad , Femenino , Transcriptoma , Neointima/patología , Neointima/inmunología , Neointima/etiología , Supervivencia de Injerto/inmunología , Pronóstico , Estudios de Seguimiento , Perfilación de la Expresión Génica , Biomarcadores/metabolismo , Donantes de Tejidos , Enfermedades Vasculares/etiología , Enfermedades Vasculares/inmunología , Enfermedades Vasculares/patología , Multiómica
3.
Am J Transplant ; 24(3): 406-418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379280

RESUMEN

HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR; however, their polarization and function remain unclear. In this study, we utilized an in vitro Transwell coculture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA-activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2 macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2 macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2 macrophages within the neointima of CAV-affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2 macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.


Asunto(s)
Receptor Toll-Like 4 , Enfermedades Vasculares , Humanos , Metaloproteinasa 9 de la Matriz , Selectina-P , Macrófagos , Endotelio , Antígenos HLA , Aloinjertos , Inmunoglobulina G
4.
J Immunol ; 209(7): 1359-1369, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165200

RESUMEN

Donor-specific HLA Abs contribute to Ab-mediated rejection (AMR) by binding to HLA molecules on endothelial cells (ECs) and triggering intracellular signaling, leading to EC activation and leukocyte recruitment. The molecular mechanisms involving donor-specific HLA Ab-mediated EC activation and leukocyte recruitment remain incompletely understood. In this study, we determined whether TLRs act as coreceptors for HLA class I (HLA I) in ECs. We found that human aortic ECs express TLR3, TLR4, TLR6, and TLR10, but only TLR4 was detected on the EC surface. Consequently, we performed coimmunoprecipitation experiments to examine complex formation between HLA I and TLR4. Stimulation of human ECs with HLA Ab increased the amount of complex formation between HLA I and TLR4. Reciprocal coimmunoprecipitation with a TLR4 Ab confirmed that the crosslinking of HLA I increased complex formation between TLR4 and HLA I. Knockdown of TLR4 or MyD88 with small interfering RNAs inhibited HLA I Ab-stimulated P-selectin expression, von Willebrand factor release, and monocyte recruitment on ECs. Our results show that TLR4 is a novel coreceptor for HLA I to stimulate monocyte recruitment on activated ECs. Taken together with our previous published results, we propose that HLA I molecules form two separate signaling complexes at the EC surface, that is, with TLR4 to upregulate P-selectin surface expression and capture of monocytes to human ECs and integrin ß4 to induce mTOR-dependent firm monocyte adhesion via ICAM-1 clustering on ECs, two processes implicated in Ab-mediated rejection.


Asunto(s)
Células Endoteliales , Molécula 1 de Adhesión Intercelular , Células Cultivadas , Endotelio Vascular/metabolismo , Antígenos HLA/metabolismo , Humanos , Integrina beta4/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos , Factor 88 de Diferenciación Mieloide/metabolismo , Selectina-P/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 6/metabolismo , Factor de von Willebrand/metabolismo
5.
Am J Physiol Cell Physiol ; 325(1): C186-C207, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184230

RESUMEN

The adhesion and subsequent activation of T cells is a critical step in local inflammatory responses, particularly of alloreactive leukocytes in rejection of transplanted donor tissue. Interferon (IFN)γ is an adaptive cytokine that promotes endothelial cell (EC) expression of pro-adhesive factors and costimulatory molecules. We recently reported that IFNγ-induced endothelial cell antigen-presenting capacity was protracted after cytokine withdrawal. This study sought to determine what intracellular signaling mediates this chronic endothelial activation by IFNγ. The durability of interferon signaling in human aortic endothelial activation was tested. Pro-adhesive and costimulatory gene expression, phenotype, secretome, and Janus kinase (JAK)/STAT phosphorylation in human primary endothelial cells were measured under chronic and transient IFNγ stimulation, with various JAK inhibitors. IFNγ reporter cells were tested for STAT1 transcriptional activity with JAK inhibition and suppressors of cytokine signaling (SOCS) overexpression, under continuous and priming conditions. The consequences of even short exposure to IFNγ were long-lasting and broad, with sustained elevation of adhesion molecules and chemokines up to 48 h later. JAK/STAT and interferon response factor expression were likewise durable, dependent on new transcription but autonomous of continuous IFNγ. Persistent STAT new transcription and JAK signaling in the endothelium was required to maintain a pro-adhesive and proimmunogenic phenotype after IFNγ withdrawal since both could be prevented by cycloheximide but only by JAKinibs with potency against JAK2. Finally, the suppressor of cytokine signaling SOCS1 failed to emerge in primed endothelial cells, which likely accounted for prolonged inflammatory gene expression. The results reveal a sustained JAK-dependent perturbation of endothelial function and suggest that JAKinibs may have therapeutic benefits in dampening vascular inflammation and allogeneic leukocyte activation.NEW & NOTEWORTHY The central question investigated in this study is why vascular endothelium remains inflamed and what underlying signaling is responsible. The new results show that the resolution of endothelial-controlled inflammation may be impaired or delayed because Janus kinase (JAK)/STAT activation is maintained autonomous of interferon (IFN)γ presence, and the late phase negative regulator suppressors of cytokine signaling (SOCS)1 fails to be induced.


Asunto(s)
Células Endoteliales , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Células Endoteliales/metabolismo , Inflamación/metabolismo , Interferón gamma/metabolismo , Quinasas Janus/metabolismo , Fosforilación , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
6.
Am J Pathol ; 192(7): 1053-1065, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490714

RESUMEN

Cardiac allograft vasculopathy (CAV) limits the long-term success of heart transplants. Generation of donor-specific antibodies (DSAs) is associated with increased incidence of CAV clinically, but mechanisms underlying development of this pathology remain poorly understood. Major histocompatibility complex-mismatched A/J cardiac allografts in B6.CCR5-/- recipients have been reported to undergo acute rejection with little T-cell infiltration, but intense deposition of C4d in large vessels and capillaries of the graft accompanied by high titers of DSA. This model was modified to investigate mechanisms of antibody-mediated CAV by transplanting A/J hearts to B6.CCR5-/- CD8-/- mice that were treated with low doses of anti-CD4 monoclonal antibody to decrease T-cell-mediated graft injury and promote antibody-mediated injury. Although the mild inhibition of CD4 T cells extended allograft survival, the grafts developed CAV with intense C4d deposition and macrophage infiltration by 14 days after transplantation. Development of CAV correlated with recipient DSA titers. Transcriptomic analysis of microdissected allograft arteries identified the Notch ligand Dll4 as the most elevated transcript in CAV, associated with high versus low titers of DSA. More importantly, these analyses revealed a differential expression of transcripts in the CAV lesions compared with the matched apical tissue that lacks large arteries. In conclusion, these findings report a novel model of antibody-mediated CAV with the potential to facilitate further understanding of the molecular mechanisms promoting development of CAV.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , Aloinjertos , Animales , Anticuerpos Monoclonales , Modelos Animales de Enfermedad , Trasplante de Corazón/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ápice del Diente
7.
Am J Transplant ; 20(10): 2686-2702, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32320528

RESUMEN

HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury.


Asunto(s)
Células Endoteliales , Rechazo de Injerto , Aloinjertos , Animales , Rechazo de Injerto/etiología , Antígenos HLA , Humanos , Inflamación/etiología , Isoanticuerpos , Macrófagos , Ratones , Fenotipo , Donantes de Tejidos
8.
Am J Transplant ; 20(10): 2652-2668, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32342639

RESUMEN

The purpose of the STAR 2019 Working Group was to build on findings from the initial STAR report to further clarify the expectations, limitations, perceptions, and utility of alloimmune assays that are currently in use or in development for risk assessment in the setting of organ transplantation. The goal was to determine the precision and clinical feasibility/utility of such assays in evaluating both memory and primary alloimmune risks. The process included a critical review of biologically driven, state-of-the-art, clinical diagnostics literature by experts in the field and an open public forum in a face-to-face meeting to promote broader engagement of the American Society of Transplantation and American Society of Histocompatibility and Immunogenetics membership. This report summarizes the literature review and the workshop discussions. Specifically, it highlights (1) available assays to evaluate the attributes of HLA antibodies and their utility both as clinical diagnostics and as research tools to evaluate the effector mechanisms driving rejection; (2) potential assays to assess the presence of alloimmune T and B cell memory; and (3) progress in the development of HLA molecular mismatch computational scores as a potential prognostic biomarker for primary alloimmunity and its application in research trial design.


Asunto(s)
Isoanticuerpos , Trasplante de Riñón , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Procesos de Grupo , Antígenos HLA , Histocompatibilidad
9.
J Immunol ; 200(7): 2372-2390, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475988

RESUMEN

Transplant recipients developing donor-specific HLA class II (HLA-II) Abs are at higher risk for Ab-mediated rejection (AMR) and transplant vasculopathy. To understand how HLA-II Abs cause AMR and transplant vasculopathy, we determined the signaling events triggered in vascular endothelial cells (EC) following Ab ligation of HLA-II molecules. HLA-II expression in EC was induced by adenoviral vector expression of CIITA or by pretreatment with TNF-α/IFN-γ. Ab ligation of class II stimulated EC proliferation and migration. Class II Ab also induced activation of key signaling nodes Src, focal adhesion kinase, PI3K, and ERK that regulated downstream targets of the mammalian target of rapamycin (mTOR) pathway Akt, p70 ribosomal S6 kinase, and S6 ribosomal protein. Pharmacological inhibitors and small interfering RNA showed the protein kinases Src, focal adhesion kinase, PI3K/Akt, and MEK/ERK regulate class II Ab-stimulated cell proliferation and migration. Treatment with rapalogs for 2 h did not affect HLA-II Ab-induced phosphorylation of ERK; instead, mTOR complex (mTORC)1 targets were dependent on activation of ERK. Importantly, suppression of mTORC2 for 24 h with rapamycin or everolimus or treatment with mTOR active-site inhibitors enhanced HLA-II Ab-stimulated phosphorylation of ERK. Furthermore, knockdown of Rictor with small interfering RNA caused overactivation of ERK while abolishing phosphorylation of Akt Ser473 induced by class II Ab. These data are different from HLA class I Ab-induced activation of ERK, which is mTORC2-dependent. Our results identify a complex signaling network triggered by HLA-II Ab in EC and indicate that combined ERK and mTORC2 inhibitors may be required to achieve optimal efficacy in controlling HLA-II Ab-mediated AMR.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Endoteliales/citología , Rechazo de Injerto/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Transducción de Señal/inmunología , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
11.
J Immunol ; 190(12): 6635-50, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23690477

RESUMEN

Ab-mediated rejection (AMR) of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor-specific Ab binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the Ab. We investigated the mechanisms underlying monocyte recruitment by HLA class I (HLA I) Ab-activated endothelium. We used a panel of murine mAbs of different subclasses to crosslink HLA I on human aortic, venous, and microvascular endothelial cells and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine (m)IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. mIgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during AMR. We confirmed these observations using human HLA allele-specific mAbs and IgG purified from transplant patient sera. HLA I Abs universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during AMR. Importantly, the subclass of donor-specific Ab may influence its pathogenesis. These results imply that human IgG1 and human IgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions.


Asunto(s)
Células Endoteliales/inmunología , Rechazo de Injerto/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Monocitos/inmunología , Selectina-P/metabolismo , Receptores de IgG/inmunología , Animales , Adhesión Celular/inmunología , Línea Celular , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Rechazo de Injerto/metabolismo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Ratones , Monocitos/metabolismo , Receptores de IgG/metabolismo
13.
Curr Opin Organ Transplant ; 19(1): 33-40, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316758

RESUMEN

PURPOSE OF REVIEW: Antibody-mediated rejection (AMR) is emerging as the leading cause of chronic rejection and allograft failure. Traditionally, the mechanisms of graft injury mediated by donor-specific antibodies beyond complement activation were not well appreciated. However, an evolving paradigm of Fc-independent antibody functions, along with clinical recognition of C4d-negative AMR, has increased awareness of the action of antibodies leading to endothelial activation and dysfunction. RECENT FINDINGS: Herein, we address current clinical trends, including the signature of microvascular inflammation in biopsies of grafts undergoing AMR, the prevalence of antibodies to human leukocyte antigen class II DQ locus (HLA-DQ) and non-HLA targets, and the functional characterization of HLA immunoglobulin G (IgG) subclasses and complement-fixing capacity. We also discuss recent experimental evidence revealing new mechanisms of endothelial and smooth muscle cell activation by HLA antibodies, which may contribute to vascular inflammation and chronic rejection. Finally, we touch upon novel discoveries of the interplay between antibodies, the complement system, and CD4 T-cell-mediated alloimmunity. SUMMARY: The current literature suggests that, although complement-fixing antibodies may have some prognostic value for graft outcome, complement-independent mechanisms of graft injury are increasingly relevant. Therapeutic strategies, which target endothelial activation induced by antibodies may ameliorate vascular inflammation and mononuclear cell infiltration characteristic of AMR.


Asunto(s)
Anticuerpos/inmunología , Proteínas del Sistema Complemento/inmunología , Rechazo de Injerto/inmunología , Antígenos HLA-DQ/inmunología , Humanos , Inmunoglobulina G/inmunología , Donantes de Tejidos , Inmunología del Trasplante
14.
Transplantation ; 108(1): 115-126, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37218026

RESUMEN

Improving long-term allograft survival and minimizing recipient morbidity is of key importance in all of transplantation. Improved matching of classical HLA molecules and avoiding HLA donor-specific antibody has been a major focus; however, emerging data suggest the relevance of nonclassical HLA molecules, major histocompatibility complex class I chain-related gene A (MICA) and B, in transplant outcomes. The purpose of this review is to discuss the structure, function, polymorphisms, and genetics of the MICA molecule and relates this to clinical outcomes in solid organ and hematopoietic stem cell transplantation. The tools available for genotyping and antibody detection will be reviewed combined with a discussion of their shortcomings. Although data supporting the relevance of MICA molecules have accumulated, key knowledge gaps exist and should be addressed before widespread implementation of MICA testing for recipients pre- or posttransplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase I/genética , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Complejo Mayor de Histocompatibilidad , Prueba de Histocompatibilidad
15.
Front Transplant ; 2: 1146040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38993843

RESUMEN

Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.

16.
Front Immunol ; 14: 1328533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274830

RESUMEN

The contribution of alloresponses to mismatched HLA-DP in solid organ transplantation and hematopoietic stem cell transplantation (HCT) has been well documented. Exploring the regulatory mechanisms of DPB1 alleles has become an important question to be answered. In this study, our initial investigation focused on examining the correlation between the rs9277534G/A SNP and DPB1 mRNA expression. The result showed that there was a significant increase in DPB1 mRNA expression in B lymphoblastoid cell lines (BLCLs) with the rs9277534GG genotype compared to rs9277534AA genotype. In addition, B cells with the rs9277534GG exhibited significantly higher DP protein expression than those carrying the rs9277534AA genotype in primary B cells. Furthermore, we observed a significant upregulation of DP expression in B cells following treatment with Interleukin 13 (IL-13) compared to untreated B cells carrying rs9277534GG-linked DPB1 alleles. Fluorescence in situ hybridization (FISH) analysis of DPB1 in BLCL demonstrated significant differences in both the cytoplasmic (p=0.0003) and nuclear (p=0.0001) localization of DP mRNA expression comparing DPB1*04:01 (rs9277534AA) and DPB1*05:01 (rs9277534GG) homozygous cells. The study of the correlation between differential DPB1 expression and long non-coding RNAs (lncRNAs) showed that lnc-HLA-DPB1-13:1 is strongly associated with DP expression (r=0.85), suggesting the potential involvement of lncRNA in regulating DP expression. The correlation of DP donor specific antibody (DSA) with B cell flow crossmatch (B-FCXM) results showed a better linear correlation of DP DSA against GG and AG donor cells (R2 = 0.4243, p=0.0025 and R2 = 0.6172, p=0.0003, respectively), compared to DSA against AA donor cells (R2 = 0.0649, p=0.4244). This explained why strong DP DSA with a low expression DP leads to negative B-FCXM. In conclusion, this study provides evidence supporting the involvement of lncRNA in modulating HLA-DP expression, shedding lights on the intricate regulatory mechanisms of DP, particularly under inflammatory conditions in transplantation.


Asunto(s)
ARN Largo no Codificante , Humanos , Hibridación Fluorescente in Situ , Cadenas beta de HLA-DP/genética , Genotipo , Anticuerpos/genética , Donante no Emparentado , ARN Mensajero
17.
Transplantation ; 107(8): 1776-1785, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36944607

RESUMEN

The "virtual" crossmatch (VXM) has become a critical tool to predict the compatibility between an organ donor and a potential recipient. Yet, nonstandardized laboratory practice can lead to variability in VXM interpretation. Therefore, UCLA's VXM Exchange survey was designed to understand factors that influence the variability of VXM prediction in the presence of HLA donor-specific antibody (DSA). Thirty-six donor blood samples and 72 HLA reference sera were sent to 35 participating laboratories to perform HLA antibody testing, flow crossmatch (FXM), and VXM from 2014 to 2019, consisting of 144 T/B-cell FXM pairs and 112 T/B-cell VXM pairs. In the FXM survey, 86% T-cell FXM and 84% B-cell FXM achieved >80% concordance among laboratories. In the VXM survey, 81% T-cell VXM and 80% VXM achieved >80% concordance. The concordance between FXM and VXM was 79% for T cell and 87% for B cell. The consensus between VXM and FXM was high with strong DSA. However, significant variability was observed in sera with (1) very high titer antibodies that exit prozone effect; (2) weak-to-moderate DSA, particularly in the presence of multiple weak DSAs; and (3) DSA against lowly expressed antigens. With the increasing use the VXM, standardization and continuous learning via exchange surveys will provide better understanding and quality controls for VXM to improve accuracy across all centers.


Asunto(s)
Anticuerpos , Tipificación y Pruebas Cruzadas Sanguíneas , Humanos , Citometría de Flujo , Prueba de Histocompatibilidad , Donantes de Tejidos , Antígenos HLA , Isoanticuerpos
18.
Curr Opin Organ Transplant ; 17(4): 446-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710387

RESUMEN

PURPOSE OF REVIEW: Advances in immunosuppression and patient management have successfully improved 1-year transplant outcome. Unfortunately, antibody-mediated rejection is a major barrier to long-term graft survival. This study summarizes the effects of antibodies on endothelial cell and smooth muscle cell (SMC) migration, proliferation and leukocyte recruitment, emphasizing the intracellular signaling pathways that orchestrate these distinct functional outcomes. RECENT FINDINGS: Several studies have provided further insight into the effects of human leukocyte antigen (HLA) class I antibodies on vascular cells. We found that HLA I molecules partner with integrin ß4 to transduce proliferative signaling, and identified proteins that associate with the cytoskeleton after HLA class I crosslinking. Natural killer cells have been strongly implicated in a murine model of donor-specific major histocompatibility complex I antibody-triggered neointimal thickening. A recently developed human arterial graft model revealed the role of matrix metalloproteinases in SMC mitogenesis by HLA class I antibodies. Using a donor transgenic for HLA-A2, Fukami et al. investigated the mechanisms of accommodation induced by low titers of HLA class I antibodies. SUMMARY: Ligation of HLA class I molecules with antibodies leads to the activation of intracellular signals in endothelial cells and SMCs, which in turn promote actin cytoskeletal remodeling, survival, proliferation, and recruitment of leukocytes.


Asunto(s)
Células Endoteliales/inmunología , Endotelio Vascular/inmunología , Antígenos HLA/inmunología , Miocitos del Músculo Liso/inmunología , Actinas/inmunología , Animales , Anticuerpos/inmunología , Proliferación Celular , Supervivencia Celular , Quimiotaxis de Leucocito , Citoesqueleto/inmunología , Endotelio Vascular/citología , Humanos , Integrina beta4/inmunología , Transducción de Señal
19.
Cell Rep Med ; 3(11): 100809, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384088

RESUMEN

Bharadwaj et al.1 demonstrate that anti-donor HLA antibodies display low levels of Fc fucosylation. This signature was associated with potent provocation of NK cell effector functions and was discriminative for active antibody-mediated rejection among patients with donor specific HLA antibodies.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Humanos , Azúcares , Glicosilación , Antígenos HLA , Anticuerpos
20.
Vascul Pharmacol ; 146: 107090, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908591

RESUMEN

Chronic vascular inflammation underlies many diseases, including atherosclerosis, autoimmune vasculitides and transplant rejection. The resolution of inflammation is critical for proper healing and restoration of homeostasis, but the timing and signaling mechanisms involved in the return to a non-inflamed state are not well understood. Pro-adhesive gene expression, phenotype and secretome of human endothelial cells was measured in primary human aortic endothelium under chronic TNFα stimulation, and after short-term TNFα priming followed by withdrawal. The effects of NFκB, MAPK and JAK1/2 inhibitors on TNFα-induced gene expression were tested. The majority of inducible TNFα effectors, such as E-selectin, VCAM-1 and most chemokines, required continuous exposure for reinforcement of the altered phenotype, and were NFκB dependent. However, 3 h priming with TNFα induced late phase STAT activation and interferon response genes after 18 h, as well as enhanced ICAM-1, BST2 and CXCR3 ligand expression. Chronic activation was autonomous of continuous TNFα, and could be blocked by the JAK1/2 inhibitor ruxolitinib. The results demonstrate that NFκB is not a significant driver of the later phase of endothelial cell activation by TNFα, but that sustained inflammation is JAK1/2-dependent and characterized by adaptive chemokines.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Factor de Necrosis Tumoral alfa , Selectina E/genética , Células Endoteliales/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Interferones , Ligandos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA