Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Asthma ; 55(11): 1205-1213, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29211599

RESUMEN

OBJECTIVES: A novel gas chromatography-mass spectrometry (GC-MS) method has been developed to quantify salbutamol in micro-volumes (10 µL) of blood. A potential application is paediatric therapeutic dose monitoring (TDM) in acute severe asthma. METHODS: At presentation, the children receive multiple doses of salbutamol (inhaled, nebulised and occasionally intravenous) but it is difficult to distinguish children who do not respond to treatment because of inadequate concentrations from those with toxicity, as symptoms are similar. A comparison was made between traditional dried blood spots (DBS) and the newly developed technique volumetric absorptive micro-sampling (VAMS), with specific investigation into the effect of drying time on analyte recovery. RESULTS: For both sampling techniques, the final assay demonstrated good precision and accuracy across the concentration range tested (3-100 ng/mL), including both the normal therapeutic and toxic range. The method was developed to comply with FDA guidelines with precision and accuracy ≤15% for all concentrations, except the limit of quantification (5 ng/mL) where they were ≤20%. VAMS offered advantages in sampling ease and reduced GC-MS interference. The assay was successfully applied to the quantification of blood salbutamol concentrations in three healthy volunteers dosed with 1 mg salbutamol by inhalation. CONCLUSIONS: This demonstrated its potential for use in paediatric TDM studies, where in the acute situation considerably higher doses of salbutamol will have been administered. This is the first time that a TDM method for salbutamol has been carried out using VAMS and offers all the advantages provided by DBS, whilst eliminating the inherent sampling volume inaccuracies of traditional DBS collection.


Asunto(s)
Albuterol/administración & dosificación , Albuterol/uso terapéutico , Asma/tratamiento farmacológico , Monitoreo de Drogas/métodos , Enfermedad Aguda , Administración por Inhalación , Recolección de Muestras de Sangre , Niño , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Humanos , Índice de Severidad de la Enfermedad
2.
Environ Sci Process Impacts ; 25(2): 304-313, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484250

RESUMEN

Chloramines (NH2Cl, NHCl2, and NCl3) are toxic compounds that can be created during the use of bleach-based disinfectants that contain hypochlorous acid (HOCl) and the hypochlorite ion (OCl-) as their active ingredients. Chloramines can then readily transfer from the aqueous-phase to the gas-phase. Atmospheric chemical ionization mass spectrometry using iodide adduct chemistry (I-CIMS) made observations across two periods (2014 and 2016) at an urban background site on the University of Leicester campus (Leicester, UK). Both monochloramine (NH2Cl) and molecular chlorine (Cl2) were detected and positively identified from calibrated mass spectra during both sampling periods and to our knowledge, this is the first detection of NH2Cl outdoors. Mixing ratios of NH2Cl reached up to 2.2 and 4.0 parts per billion by volume (ppbv), with median mixing ratios of 30 and 120 parts per trillion by volume (pptv) during the 2014 and 2016 sampling periods, respectively. Levels of Cl2 were observed to reach up to 220 and 320 pptv. Analysis of the NH2Cl and Cl2 data pointed to the same local source, a nearby indoor sports complex with a swimming pool and a cleaning product storage shed. No appreciable levels of NHCl2 and NCl3 were observed outdoors, suggesting the indoor pool was not likely to be the primary source of the observed ambient chloramines, as prior measurements made in indoor pool atmospheres indicate that NCl3 would be expected to dominate. Instead, these observations point to indoor cleaning and/or cleaning product emissions as the probable source of NH2Cl and Cl2 where the measured levels provide indirect evidence for substantial amounts transported from indoors to outdoors. Our upper estimate for total NH2Cl emissions from the University of Leicester indoor sports complexes scaled for similar sports complexes across the UK is 3.4 × 105 ± 1.1 × 105 µg h-1 and 0.0017 ± 0.00034 Gg yr-1, respectively. The Cl-equivalent emissions in HCl are only an order of magnitude less to those from hazardous waste incineration and iron and steel sinter production in the UK National Atmospheric Emissions Inventory (NAEI).


Asunto(s)
Desinfectantes , Purificación del Agua , Cloro , Cloraminas/química , Desinfectantes/química , Ácido Hipocloroso/química
3.
J Chromatogr A ; 1491: 36-42, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28242052

RESUMEN

A critical step in the bottom-up characterization of proteomes is the conversion of proteins to peptides, by means of endoprotease digestion. Nowadays this method typically uses overnight digestion and as such represents a considerable bottleneck for high-throughput analysis. This report describes protein digestion using an immobilized-enzyme reactor (IMER), which enables accelerated digestion times that are completed within seconds to minutes. For rapid digestion to occur, a cyclic-olefin-copolymer microfluidic reactor was constructed containing trypsin immobilized on a polymer monolithic material through a 2-vinyl-4,4-dimethylazlactone linker. The IMER was applied for the rapid offline digestion of both singular protein standards and a complex protein mixture prior to liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The effects of protein concentration and residence time in the IMER were assessed for protein standards of varying molecular weight between 11 and 240kDa. Compared to traditional in-solution digestion, IMER-facilitated protein digestion at room temperature for 5min yielded similar results in terms of sequence coverage and number of identified peptides. Good repeatability was demonstrated with a relative standard deviation of 6% for protein-sequence coverage. The potential of the IMER was also demonstrated for a complex protein mixture in the analysis of dried blood spots. Compared to a traditional workflow a similar number of proteins could be identified, while reducing the total analysis time from 22.5h to 4h and importantly omitting the sample-pre-treatment steps (denaturation, reduction, and alkylation). The identified proteins from two workflows showed similar distributions in terms of molecular weight and hydrophobic character.


Asunto(s)
Proteínas Sanguíneas/análisis , Cicloparafinas/química , Pruebas con Sangre Seca , Enzimas Inmovilizadas , Técnicas Analíticas Microfluídicas/instrumentación , Polímeros/química , Pruebas con Sangre Seca/instrumentación , Pruebas con Sangre Seca/métodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA