Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cytotherapy ; 25(9): 993-1005, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37256241

RESUMEN

BACKGROUND AIMS: Human pluripotent stem cells (PSCs) hold a great promise for promoting regenerative medical therapies due to their ability to generate multiple mature cell types and for their high expansion potential. However, cell therapies require large numbers of cells to achieve desired therapeutic effects, and traditional two-dimensional static culture methods cannot meet the required production demand for cellular therapies. One solution to this problem is scaling up expansion of PSCs in bioreactors using culture strategies such as growing cells on microcarriers or as aggregates in suspension culture. METHODS: In this study, we directly compared PSC expansion and quality parameters in microcarrier- and aggregate-cultures grown in single-use vertical-wheel bioreactors. RESULTS: We showed comparable expansion of cells on microcarriers and as aggregates by day 6 with a cell density reaching 2.2 × 106 cells/mL and 1.8 × 106 cells/mL and a fold-expansion of 22- and 18-fold, respectively. PSCs cultured on microcarriers and as aggregates were comparable with parallel two-dimensional cultures and with each other in terms of pluripotency marker expression and retention of other pluripotency characteristics as well as differentiation potential into three germ layers, neural precursor cells and cardiomyocytes. CONCLUSIONS: Our study did not demonstrate a clear advantage between the two three-dimensional methods for the quality parameters assessed. This analysis adds support to the use of bioreactor systems for large scale expansion of PSCs, demonstrating that the cells retain key characteristics of PSCs and differentiation potential in suspension culture.


Asunto(s)
Células-Madre Neurales , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Diferenciación Celular , Proliferación Celular
2.
Stem Cells ; 36(10): 1501-1513, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29873142

RESUMEN

Human induced pluripotent stem cells (iPSCs) have great potential as source cells for therapeutic uses. However, reports indicate that iPSCs carry genetic abnormalities, which may impede their medical use. Little is known about mechanisms contributing to intrinsic DNA damage in iPSCs that could lead to genomic instability. In this report, we investigated the level of DNA damage in human iPSC lines compared with their founder fibroblast line and derived mesenchymal stromal cell (MSC) lines using the phosphorylated histone variant, γH2AX, as a marker of DNA damage. We show that human iPSCs have elevated basal levels of γH2AX, which correlate with markers of DNA replication: 5-ethynyl-2'-deoxyuridine and the single-stranded binding protein, replication protein A. γH2AX foci in iPSCs also colocalize to BRCA1 and RAD51, proteins in the homologous repair pathway, implying γH2AX in iPSCs marks sites of double strand breaks. Our study demonstrates an association between increased basal levels of γH2AX and the rapid replication of iPSCs. Stem Cells 2018;36:1501-1513.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Replicación del ADN , Fibroblastos/metabolismo , Histonas/genética , Humanos , Ratones
3.
Int J Mol Sci ; 21(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877727

RESUMEN

Industrialization of stem-cell based therapies requires innovative solutions to close the gap between research and commercialization. Scalable cell production platforms are needed to reliably deliver the cell quantities needed during the various stages of development and commercial supply. Human pluripotent stem cells (hPSCs) are a key source material for generating therapeutic cell types. We have developed a closed, automated and scalable stirred tank bioreactor platform, capable of sustaining high fold expansion of hPSCs. Such a platform could facilitate the in-process monitoring and integration of online monitoring systems, leading to significantly reduced labor requirements and contamination risk. hPSCs are expanded in a controlled bioreactor using perfused xeno-free media. Cell harvest and concentration are performed in closed steps. The hPSCs can be cryopreserved to generate a bank of cells, or further processed as needed. Cryopreserved cells can be thawed into a two-dimensional (2D) tissue culture platform or a three-dimensional (3D) bioreactor to initiate a new expansion phase, or be differentiated to the clinically relevant cell type. The expanded hPSCs express hPSC-specific markers, have a normal karyotype and the ability to differentiate to the cells of the three germ layers. This end-to-end platform allows a large scale expansion of high quality hPSCs that can support the required cell demand for various clinical indications.


Asunto(s)
Automatización de Laboratorios/métodos , Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes Inducidas/citología , Cultivo Primario de Células/métodos , Automatización de Laboratorios/instrumentación , Reactores Biológicos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Cultivo Primario de Células/instrumentación
4.
Nucleic Acids Res ; 43(12): 5912-23, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25990736

RESUMEN

SLX4 assembles a toolkit of endonucleases SLX1, MUS81 and XPF, which is recruited to telomeres via direct interaction of SLX4 with TRF2. Telomeres present an inherent obstacle for DNA replication and repair due to their high propensity to form branched DNA intermediates. Here we provide novel insight into the mechanism and regulation of the SLX4 complex in telomere preservation. SLX4 associates with telomeres throughout the cell cycle, peaking in late S phase and under genotoxic stress. Disruption of SLX4's interaction with TRF2 or SLX1 and SLX1's nuclease activity independently causes telomere fragility, suggesting a requirement of the SLX4 complex for nucleolytic resolution of branched intermediates during telomere replication. Indeed, the SLX1-SLX4 complex processes a variety of telomeric joint molecules in vitro. The nucleolytic activity of SLX1-SLX4 is negatively regulated by telomeric DNA-binding proteins TRF1 and TRF2 and is suppressed by the RecQ helicase BLM in vitro. In vivo, in the presence of functional BLM, telomeric circle formation and telomere sister chromatid exchange, both arising out of nucleolytic processing of telomeric homologous recombination intermediates, are suppressed. We propose that the SLX4-toolkit is a telomere accessory complex that, in conjunction with other telomere maintenance proteins, ensures unhindered, but regulated telomere maintenance.


Asunto(s)
Recombinasas/metabolismo , Telómero/metabolismo , Ciclo Celular , ADN/metabolismo , Endodesoxirribonucleasas , Endonucleasas/metabolismo , Células HeLa , Recombinación Homóloga , Humanos , RecQ Helicasas/metabolismo , Intercambio de Cromátides Hermanas , Proteínas de Unión a Telómeros/metabolismo
5.
J Biol Chem ; 290(9): 5502-11, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25572391

RESUMEN

Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.


Asunto(s)
Células de la Médula Ósea/metabolismo , Reparación del ADN , Telómero/metabolismo , Uracilo/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hibridación Fluorescente in Situ , Ratones Noqueados , Unión Proteica , Complejo Shelterina , Telómero/genética , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Timina/metabolismo , Uracil-ADN Glicosidasa/deficiencia , Uracil-ADN Glicosidasa/genética
6.
PLoS Genet ; 9(7): e1003639, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874233

RESUMEN

Telomeres are chromosome end structures and are essential for maintenance of genome stability. Highly repetitive telomere sequences appear to be susceptible to oxidative stress-induced damage. Oxidation may therefore have a severe impact on telomere integrity and function. A wide spectrum of oxidative pyrimidine-derivatives has been reported, including thymine glycol (Tg), that are primarily removed by a DNA glycosylase, Endonuclease III-like protein 1 (Nth1). Here, we investigate the effect of Nth1 deficiency on telomere integrity in mice. Nth1 null (Nth1(-/-) ) mouse tissues and primary MEFs harbor higher levels of Endonuclease III-sensitive DNA lesions at telomeric repeats, in comparison to a non-telomeric locus. Furthermore, oxidative DNA damage induced by acute exposure to an oxidant is repaired slowly at telomeres in Nth1(-/-) MEFs. Although telomere length is not affected in the hematopoietic tissues of Nth1(-/-) adult mice, telomeres suffer from attrition and increased recombination and DNA damage foci formation in Nth1(-/-) bone marrow cells that are stimulated ex vivo in the presence of 20% oxygen. Nth1 deficiency also enhances telomere fragility in mice. Lastly, in a telomerase null background, Nth1(-/-) bone marrow cells undergo severe telomere loss at some chromosome ends and cell apoptosis upon replicative stress. These results suggest that Nth1 plays an important role in telomere maintenance and base repair against oxidative stress-induced base modifications. The fact that telomerase deficiency can exacerbate telomere shortening in Nth1 deficient mouse cells supports that base excision repair cooperates with telomerase to maintain telomere integrity.


Asunto(s)
Daño del ADN , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Inestabilidad Genómica , Telómero/genética , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Cromosomas/genética , Cromosomas/metabolismo , Cromosomas/ultraestructura , Ratones , Ratones Noqueados , Estrés Oxidativo , Oxígeno/metabolismo , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Telómero/patología
7.
PLoS Genet ; 6(5): e1000951, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20485567

RESUMEN

8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)-initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH), by chromosome orientation-FISH (CO-FISH), and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/-)) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1(-/-) mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/-) mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/-) mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/-) MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals.


Asunto(s)
Guanina/química , Guanosina/análogos & derivados , Telómero , Animales , Células Cultivadas , Técnica del Anticuerpo Fluorescente Indirecta , Guanosina/química , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Recombinación Genética , Intercambio de Cromátides Hermanas
8.
RNA ; 16(9): 1797-808, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20651030

RESUMEN

The process of protein synthesis must be sufficiently rapid and sufficiently accurate to support continued cellular growth. Failure in speed or accuracy can have dire consequences, including disease in humans. Most estimates of the accuracy come from studies of bacterial systems, principally Escherichia coli, and have involved incomplete analysis of possible errors. We recently used a highly quantitative system to measure the frequency of all types of misreading errors by a single tRNA in E. coli. That study found a wide variation in error frequencies among codons; a major factor causing that variation is competition between the correct (cognate) and incorrect (near-cognate) aminoacyl-tRNAs for the mutant codon. Here we extend that analysis to measure the frequency of missense errors by two tRNAs in a eukaryote, the yeast Saccharomyces cerevisiae. The data show that in yeast errors vary by codon from a low of 4 x 10(-5) to a high of 6.9 x 10(-4) per codon and that error frequency is in general about threefold lower than in E. coli, which may suggest that yeast has additional mechanisms that reduce missense errors. Error rate again is strongly influenced by tRNA competition. Surprisingly, missense errors involving wobble position mispairing were much less frequent in S. cerevisiae than in E. coli. Furthermore, the error-inducing aminoglycoside antibiotic, paromomycin, which stimulates errors on all error-prone codons in E. coli, has a more codon-specific effect in yeast.


Asunto(s)
Codón , Mutación Missense , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Paromomicina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
RNA ; 15(6): 1100-9, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386726

RESUMEN

During the process of translation, an aminoacyl tRNA is selected in the A site of the decoding center of the small subunit based on the correct codon-anticodon base pairing. Though selection is usually accurate, mutations in the ribosomal RNA and proteins and the presence of some antibiotics like streptomycin alter translational accuracy. Recent crystallographic structures of the ribosome suggest that cognate tRNAs induce a "closed conformation" of the small subunit that stabilizes the codon-anticodon interactions at the A site. During formation of the closed conformation, the protein interface between rpS4 and rpS5 is broken while new contacts form with rpS12. Mutations in rpS12 confer streptomycin resistance or dependence and show a hyperaccurate phenotype. Mutations reversing streptomycin dependence affect rpS4 and rpS5. The canonical rpS4 and rpS5 streptomycin independent mutations increase translational errors and were called ribosomal ambiguity mutations (ram). The mutations in these proteins are proposed to affect formation of the closed complex by breaking the rpS4-rpS5 interface, which reduces the cost of domain closure and thus increases translational errors. We used a yeast two-hybrid system to study the interactions between the small subunit ribosomal proteins rpS4 and rpS5 and to test the effect of ram mutations on the stability of the interface. We found no correlation between ram phenotype and disruption of the interface.


Asunto(s)
Mutación , Proteínas Ribosómicas/genética , Modelos Moleculares , Fenotipo , Conformación Proteica , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
10.
RNA ; 15(5): 889-97, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19329535

RESUMEN

Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.


Asunto(s)
Codón de Terminación , Euplotes/genética , Sistema de Lectura Ribosómico , Tetrahymena thermophila/genética , Animales , Código Genético , Humanos , Modelos Moleculares , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo
11.
Nat Genet ; 46(5): 482-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24686846

RESUMEN

Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole-exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin gene POT1 (chromosome 7, g.124493086C>T; p.Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere lengths and numbers of fragile telomeres, suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two separate Italian families, one variant per family, yielding a frequency for POT1 variants comparable to that for CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in US and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Melanoma/genética , Modelos Moleculares , Mutación Missense/genética , Neoplasias de Tejido Conjuntivo/genética , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética , Secuencia de Aminoácidos , Secuencia de Bases , Biología Computacional , Exoma/genética , Francia , Humanos , Hibridación Fluorescente in Situ , Italia , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Análisis de Secuencia de ADN , Complejo Shelterina , Neoplasias Cutáneas , Proteínas de Unión a Telómeros/química , Estados Unidos , Melanoma Cutáneo Maligno
12.
Aging Cell ; 12(4): 635-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23590194

RESUMEN

Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1-3) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase-mediated telomere repeat addition is negatively modulated by the levels of telomere-bound Rap1-Rif1-Rif2 protein complex. Using a yeast strain defective in the major peroxiredoxin Tsa1 that is involved in ROS neutralization, we have investigated the effect of defective ROS detoxification on telomere DNA, telomerase, telomere-binding proteins, and telomere length. Surprisingly, the tsa1 mutant does not show significant increase in steady-state levels of oxidative DNA lesions at telomeres. The tsa1 mutant displays abnormal telomere lengthening, and reduction in oxidative exposure alleviates this phenotype. The telomere lengthening in the tsa1 cells was abolished by disruption of Est2, subtelomeric DNA, Rap1 C-terminus, or Rif2, but not by Rif1 deletion. Although telomerase expression and activity are not altered, telomere-bound Est2 is increased, while telomere-bound Rap1 is reduced in the tsa1 mutant. We propose that defective ROS scavenging can interfere with pathways that are critical in controlling telomere length homeostasis.


Asunto(s)
Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Peroxidasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Homeostasis del Telómero , Telómero/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Mol Evol ; 63(4): 545-61, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16838213

RESUMEN

Programmed translational frameshifting is a ubiquitous but rare mechanism of gene expression in which mRNA sequences cause the translational machinery to shift reading frames with extreme efficiency, up to at least 50%. The mRNA sequences responsible are deceptively simple; the sequence CUU-AGG-C causes about 40% frameshifting when inserted into an mRNA in the yeast Saccharomyces cerevisiae. The high efficiency of this site depends on a set of S. cerevisiae tRNA isoacceptors that perturb the mechanism of translation to cause the programmed translational error. The simplicity of the system might suggest that it could evolve frequently and perhaps be lost as easily. We have investigated the history of programmed +1 frameshifting in fungi. We find that frameshifting has persisted in two structural genes in budding yeasts, ABP140 and EST3 for about 150 million years. Further, the tRNAs that stimulate the event are equally old. Species that diverged from the lineage earlier both do not employ frameshifting and have a different complement of tRNAs predicted to be inimical to frameshifting. The stability of the coevolution of protein coding genes and tRNAs suggests that frameshifting has been selected for during the divergence of these species.


Asunto(s)
Evolución Molecular , Sistema de Lectura Ribosómico/genética , ARN de Transferencia/metabolismo , Saccharomycetales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Células Eucariotas/metabolismo , Genes Fúngicos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Filogenia , Mutación Puntual/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Sintenía , Telomerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA