RESUMEN
Iron and zinc bioaccumulation in mycelial biomass of different medicinal basidiomycetes was evaluated in order to produce metal-enriched mycelial biomass as an alternative functional food from non-animal sources and based on biotechnology processes. Pleurotus ostreatus strain U2-9, U2-11, U6-8, and U6-9, Pleurotus eryngii strain U8-11, Schizophyllum commune strain U6-7, and Lentinula edodes strain U6-11 and U6-12 were grown in malt extract agar with or without addition of 50 mg/L iron or 7.5 mg/L zinc. The mycelial biomass was separated and iron and zinc concentrations were determined in a flame atomic absorption spectrophotometer. Basidiomycete strains presented different growth rates with the presence of iron and zinc; there was no dependence between the metal bioaccumulation and the fungal growth. The fungi presented greater capacity to bioaccumulate iron than zinc. P. ostreatus (U2-9) has greater iron bioaccumulation (3197.7 mg/kg) while P. ostreatus (U6-8) greater zinc bioaccumulation (440.4 mg/kg) in mycelial biomass. P. ostreatus (U2-9), P. ostreatus (U2-11), and S. commune (U6-7) had the highest metal translocation rates from the culture medium to mycelial biomass. The mycelial biomass enriched with iron or zinc is an alternative to a new functional food from non-animal sources.
Asunto(s)
Biomasa , Pleurotus , Hierro , Micelio , ZincRESUMEN
Lentinus crinitus is a white-rot fungus that produces laccase, an enzyme used for dye decolorization. Enzyme production depends on cultivation conditions, mainly agro-industrial by-products. We aimed to produce laccase from Lentinus crinitus with agro-industrial by-products for dye decolorization. Culture medium had coffee husk (CH) or citric pulp pellet (CP) and different nitrogen sources (urea, yeast extract, ammonium sulfate and sodium nitrate) at concentrations of 0, 0.7, 1.4, 2.8, 5.6 and 11.2 g/L. Enzymatic extract was used in the decolorization of remazol brilliant blue R. CH medium promoted greater laccase production than CP in all evaluated conditions. Urea provided the greatest laccase production for CH (37280 U/L) as well as for CP (34107 U/L). In CH medium, laccase activity was suppressed when carbon-to-nitrogen ratio changed from 4.5 to 1.56, but the other nitrogen concentrations did not affect laccase activity. For CP medium, reduction in carbon-to-nitrogen ratio from 6 to 1.76 increased laccase activity in 17%. The peak of laccase activity in CH medium occurred on the 11th day (41246 U/L) and in CP medium on the 12th day (32660 U/L). The maximum decolorization within 24 h was observed with CP enzymatic extract (74%) and with CH extract (76%).