Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 206(1): e0028623, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38169295

RESUMEN

The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation, and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization, and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting nonCF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short-chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but also altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of CF gut dysbiosis. IMPORTANCE Cystic fibrosis is an autosomal recessive disease that disrupts ion transport at mucosal surfaces, leading to mucus accumulation and altered physiology of both the lungs and the intestines, among other organs, with the resulting altered environment contributing to an imbalance of microbial communities. Culture media representative of the CF airway have been developed and validated; however, no such medium exists for modeling the CF intestine. Here, we develop and validate a first-generation culture medium inclusive of features that are altered in the CF colon. Our findings suggest this novel medium, called CF-MiPro, as a maintenance medium for CF gut microbiome samples and a flexible tool for studying key drivers of CF-associated gut dysbiosis.


Asunto(s)
Fibrosis Quística , Microbioma Gastrointestinal , Microbiota , Adulto , Animales , Humanos , Niño , Fibrosis Quística/microbiología , Disbiosis , Sistema Respiratorio , Regulador de Conductancia de Transmembrana de Fibrosis Quística
2.
mBio ; 15(2): e0314423, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38179971

RESUMEN

Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1ß-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroides-supplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serum compared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Taken together, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airway inflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate it produces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic and airway inflammation for persons with CF.IMPORTANCEThe composition of the gut microbiome in persons with CF is correlated with lung health outcomes, a phenomenon referred to as the gut-lung axis. Here, we demonstrate that the intestinal microbe Bacteroides decreases inflammation through the production of the short-chain fatty acid propionate. Supplementing the levels of Bacteroides in an animal model of CF is associated with reduced systemic inflammation and reduction in the relative abundance of the opportunistically pathogenic group Escherichia/Shigella in the gut. Taken together, these data demonstrate a key role for Bacteroides and microbially produced propionate in modulating inflammation, gut microbial ecology, and the gut-lung axis in cystic fibrosis. These data support the role of Bacteroides as a potential probiotic in CF.


Asunto(s)
Fibrosis Quística , Niño , Lactante , Humanos , Ratones , Animales , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Propionatos , Bacteroides/genética , Células CACO-2 , Inflamación/complicaciones , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Escherichia coli
3.
mSphere ; 8(4): e0004623, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37404016

RESUMEN

Cystic fibrosis (CF) is a heritable disease that causes altered physiology at mucosal sites; these changes result in chronic infections in the lung, significant gastrointestinal complications as well as dysbiosis of the gut microbiome, although the latter has been less well explored. Here, we describe the longitudinal development of the gut microbiome in a cohort of children with CF (cwCF) from birth through early childhood (0-4 years of age) using 16S rRNA gene amplicon sequencing of stool samples as a surrogate for the gut microbiota. Similar to healthy populations, alpha diversity of the gut microbiome increases significantly with age, but diversity plateaus at ~2 years of age for this CF cohort. Several taxa that have been associated with dysbiosis in CF change with age toward a more healthy-like composition; notable exceptions include Akkermansia, which decreases with age, and Blautia, which increases with age. We also examined the relative abundance and prevalence of nine taxa associated with CF lung disease, several of which persist across early life, highlighting the possibility of the lung being seeded directly from the gut early in life. Finally, we applied the Crohn's Dysbiosis Index to each sample, and found that high Crohn's-associated dysbiosis early in life (<2 years) was associated with significantly lower Bacteroides in samples collected from 2 to 4 years of age. Together, these data comprise an observational study that describes the longitudinal development of the CF-associated gut microbiota and suggest that early markers associated with inflammatory bowel disease may shape the later gut microbiota of cwCF. IMPORTANCE Cystic fibrosis is a heritable disease that disrupts ion transport at mucosal surfaces, causing a buildup of mucus and dysregulation of microbial communities in both the lungs and the intestines. Persons with CF are known to have dysbiotic gut microbial communities, but the development of these communities over time beginning at birth has not been thoroughly studied. Here, we describe an observation study following the development of the gut microbiome of cwCF throughout the first 4 years of life, during the critical window of both gut microbiome and immune development. Our findings indicate the possibility of the gut microbiota as a reservoir of airway pathogens and a surprisingly early indication of a microbiota associated with inflammatory bowel disease.


Asunto(s)
Fibrosis Quística , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Niño , Recién Nacido , Humanos , Preescolar , Fibrosis Quística/complicaciones , Disbiosis/complicaciones , ARN Ribosómico 16S/genética
4.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577487

RESUMEN

The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting non-CF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of gut dysbiosis in CF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA