Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 488(7413): 642-6, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22932389

RESUMEN

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


Asunto(s)
Marcha/genética , Caballos/genética , Caballos/fisiología , Mutación/genética , Médula Espinal/fisiología , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Codón sin Sentido/genética , Marcha/fisiología , Perfilación de la Expresión Génica , Frecuencia de los Genes , Caballos/clasificación , Islandia , Ratones , Datos de Secuencia Molecular , Vías Nerviosas/fisiología , Desempeño Psicomotor/fisiología , Médula Espinal/citología , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
2.
Dev Biol ; 366(2): 279-89, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22521513

RESUMEN

Coordinated limb rhythmic movements take place through organized signaling in local spinal cord neuronal networks. The establishment of these circuitries during development is dependent on the correct guidance of axons to their targets. It has previously been shown that the well-known axon guidance molecule netrin-1 is required for configuring the circuitry that provides left-right alternating coordination in fictive locomotion. The attraction of commissural axons to the midline in response to netrin-1 has been shown to involve the netrin-1 receptor DCC (deleted in Colorectal Cancer). However, the role of DCC for the establishment of CPG coordination has not yet been resolved. We show that mice carrying a null mutation of DCC displayed an uncoordinated left-right activity during fictive locomotion accompanied by a loss of interneuronal subpopulations originating from commissural progenitors. Thus, DCC plays a crucial role in the formation of spinal neuronal circuitry coordinating left-right activities. Together with the previously published results from netrin-1 deficient mice, the data presented in this study suggest a role for the most ventral originating V3 interneurons in synchronous activities over the midline. Further, it provides evidence that axon crossing in the spinal cord is more intricately controlled than in previously suggested models of DCC-netrin-1 interaction.


Asunto(s)
Axones/fisiología , Generadores de Patrones Centrales/fisiología , Receptores de Superficie Celular/fisiología , Médula Espinal/fisiología , Animales , Axones/ultraestructura , Generadores de Patrones Centrales/citología , Interneuronas/fisiología , Interneuronas/ultraestructura , Locomoción/fisiología , Ratones , Receptores de Netrina , Transducción de Señal , Médula Espinal/embriología
3.
J Neurosci ; 29(50): 15642-9, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20016078

RESUMEN

Neuronal circuits in the spinal cord that produce the rhythmic and coordinated activities necessary for limb movements are referred to as locomotor central pattern generators (CPGs). The identities and preceding development of neurons essential for coordination between left and right limbs are not yet known. We show that the ventral floor plate chemoattractant Netrin-1 preferentially guides dorsally originating subtypes of commissural interneurons, the majority of which are inhibitory. In contrast, the excitatory and ventralmost V3 subtype of interneurons have a normal number of commissural fibers in Netrin-1 mutant mice, thus being entirely independent of Netrin-1-mediated attraction. This selective loss of commissural fibers in Netrin-1 mutant mice resulted in an abnormal circuitry manifested by a complete switch from alternating to synchronous fictive locomotor activity suggesting that the most ventral-originating excitatory commissural interneurons are an important component of a left-right synchrony circuit in the locomotor CPG. Thus, during development, Netrin-1 plays a critical role for the establishment of a functional balanced CPG.


Asunto(s)
Lateralidad Funcional/fisiología , Interneuronas/fisiología , Actividad Motora/fisiología , Factores de Crecimiento Nervioso/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Animales Recién Nacidos , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Red Nerviosa/citología , Netrina-1 , Desempeño Psicomotor/fisiología , Médula Espinal/citología
4.
Neuron ; 45(1): 55-67, 2005 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-15629702

RESUMEN

Studies have indicated that oligodendrocytes in the spinal cord originate from a ventral progenitor domain defined by expression of the oligodendrocyte-determining bHLH proteins Olig1 and Olig2. Here, we provide evidence that progenitors in the dorsal spinal cord and hindbrain also produce oligodendrocytes and that the specification of these cells may result from a dorsal evasion of BMP signaling over time. Moreover, we show that the generation of ventral oligodendrocytes in the spinal cord depends on Nkx6.1 and Nkx6.2 function, while these homeodomain proteins in the anterior hindbrain instead suppress oligodendrocyte specification. The opposing roles for Nkx6 proteins in the spinal cord and hindbrain, in turn, appear to reflect that oligodendrocytes are produced by distinct ventral progenitor domains at these axial levels. Based on these findings, we propose that oligodendrocytes derive from several distinct positional origins and that the activation of Olig1/2 at different positions is controlled by distinct genetic programs.


Asunto(s)
Diferenciación Celular/genética , Oligodendroglía/metabolismo , Rombencéfalo/embriología , Médula Espinal/embriología , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Biomarcadores , Proteína Morfogenética Ósea 7 , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/citología , Factor de Transcripción PAX7 , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Rombencéfalo/citología , Rombencéfalo/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo
5.
Ann N Y Acad Sci ; 1279: 32-42, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23531000

RESUMEN

During neuronal circuit formation, axons are guided to their targets by the help of axon guidance molecules, which are required for establishing functional circuits. A promising system to dissect the development and functionalities of neuronal circuitry is the spinal cord central pattern generator (CPG) for locomotion, which converts a tonic supraspinal drive to rhythmic and coordinated movements. Here we describe concepts arising from genetic studies of the locomotor network with a focus on the position and roles of commissural interneurons. In particular, this involves studies of several families of axon guidance molecules relevant for midline crossing, the Eph/ephrins and Netrin/DCC. Effects on developing commissural interneurons in mice with aberrant midline axon guidance capabilities suggest that, in addition to ventral populations, dorsal commissural interneurons also play a role in coordinating locomotor circuitry. Recent findings implicate the novel dI6 interneuron marker Dmrt3 in this role. Strikingly, mutations in Dmrt3 result in divergent gait patterns in both mice and horses.


Asunto(s)
Lateralidad Funcional/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Médula Espinal/citología , Animales , Lateralidad Funcional/genética , Humanos , Interneuronas/citología , Interneuronas/metabolismo , Locomoción/genética , Ratones , Modelos Biológicos , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Red Nerviosa/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiología
6.
J Neurotrauma ; 29(17): 2660-71, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-22985250

RESUMEN

We investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI. Using qRT-PCR in wild-type (WT) mice, we evaluated the EphA4 mRNA levels following controlled cortical impact (CCI) TBI or sham injury and found it to be downregulated in the hippocampus (p<0.05) but not the cortex ipsilateral to the injury at 24 h post-injury. Next, we evaluated the behavioral and histological outcome following CCI using WT mice and Emx1-Cre-driven conditional knockout (cKO) mice. In cKO mice, EphA4 was completely absent in the hippocampus and markedly reduced in the cortical regions from embryonic day 16, which was confirmed using Western blot analysis. EphA4 cKO mice had similar learning and memory abilities at 3 weeks post-TBI compared to WT controls, although brain-injured animals performed worse than sham-injured controls (p<0.05). EphA4 cKO mice performed similarly to WT mice in the rotarod and cylinder tests of motor function up to 29 days post-injury. TBI increased cortical and hippocampal astrocytosis (GFAP immunohistochemistry, p<0.05) and hippocampal sprouting (Timm stain, p<0.05) and induced a marked loss of hemispheric tissue (p<0.05). EphA4 cKO did not alter the histological outcome. Although our results may argue against a beneficial role for EphA4 in the recovery process following TBI, further studies including post-injury pharmacological neutralization of EphA4 are needed to define the role for EphA4 following TBI.


Asunto(s)
Lesiones Encefálicas/patología , Lesiones Encefálicas/psicología , Receptor EphA4/genética , Animales , Western Blotting , Peso Corporal/fisiología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Cojera Animal/etiología , Cojera Animal/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Equilibrio Postural/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor EphA4/fisiología , Caracteres Sexuales
7.
J Comp Neurol ; 518(12): 2284-304, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20437528

RESUMEN

Spinal cholinergic neurons are critical for motor function in both the autonomic and somatic nervous systems and are affected in spinal cord injury and in diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy. Using two screening approaches and in situ hybridization, we identified 159 genes expressed in typical cholinergic patterns in the spinal cord. These include two general cholinergic neuron markers, one gene exclusively expressed in motor neurons, and nine genes expressed in unknown subtypes of somatic motor neurons. Further, we present evidence that chondrolectin (Chodl) is expressed by fast motor neurons and that estrogen-related receptor beta (ERRbeta) is a candidate marker for slow motor neurons. In addition, we suggest paired-like homeodomain transcription factor 2 (Pitx2) as a marker for cholinergic partition cells.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Lectinas Tipo C/metabolismo , Neuronas Motoras/fisiología , Receptores de Estrógenos/metabolismo , Médula Espinal/fisiología , Factores de Transcripción/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/genética , Hibridación in Situ , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Receptores de Estrógenos/genética , Médula Espinal/citología , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
8.
Development ; 130(17): 4149-59, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12874134

RESUMEN

The genetic program that underlies the generation of visceral motoneurons in the developing hindbrain remains poorly defined. We have examined the role of Nkx6 and Nkx2 class homeodomain proteins in this process, and provide evidence that these proteins mediate complementary roles in the specification of visceral motoneuron fate. The expression of Nkx2.2 in hindbrain progenitor cells is sufficient to mediate the activation of Phox2b, a homeodomain protein required for the generation of hindbrain visceral motoneurons. The redundant activities of Nkx6.1 and Nkx6.2, in turn, are dispensable for visceral motoneuron generation but are necessary to prevent these cells from adopting a parallel program of interneuron differentiation. The expression of Nkx6.1 and Nkx6.2 is further maintained in differentiating visceral motoneurons, and consistent with this the migration and axonal projection properties of visceral motoneurons are impaired in mice lacking Nkx6.1 and/or Nkx6.2 function. Our analysis provides insight also into the role of Nkx6 proteins in the generation of somatic motoneurons. Studies in the spinal cord have shown that Nkx6.1 and Nkx6.2 are required for the generation of somatic motoneurons, and that the loss of motoneurons at this level correlates with the extinguished expression of the motoneuron determinant Olig2. Unexpectedly, we find that the initial expression of Olig2 is left intact in the caudal hindbrain of Nkx6.1/Nkx6.2 compound mutants, and despite this, all somatic motoneurons are missing. These data argue against models in which Nkx6 proteins and Olig2 operate in a linear pathway, and instead indicate a parallel requirement for these proteins in the progression of somatic motoneuron differentiation. Thus, both visceral and somatic motoneuron differentiation appear to rely on the combined activity of cell intrinsic determinants, rather than on a single key determinant of neuronal cell fate.


Asunto(s)
Proteínas Aviares , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Rombencéfalo/embriología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Inmunohistoquímica , Ratones , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Proteínas de Pez Cebra
9.
Genes Dev ; 17(6): 729-37, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12651891

RESUMEN

Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.


Asunto(s)
Encéfalo/embriología , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Neuronas Motoras/metabolismo , Factores de Transcripción/genética , Animales , Bromodesoxiuridina/farmacología , Linaje de la Célula , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Fluorescente , Modelos Biológicos , Mutación , Neuronas/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA