Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(2): 429-442, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153240

RESUMEN

BACKGROUND: Cerebral ventriculitis might be caused by Gram-negative bacteria, including ESBL producers. Temocillin may be a useful treatment option in this scenario; however, no consistent data are available regarding its penetration into the CSF. OBJECTIVES: To describe the population pharmacokinetics of temocillin in plasma and CSF and to determine the probability for different simulated dosing regimens to achieve pharmacokinetic/pharmacodynamic (PK/PD) targets in the CSF. METHODS: Ten post-neurosurgical critically ill adult patients requiring continuous drainage of CSF were included in this monocentric, prospective, open-label, non-randomized study. They received 2 g loading dose temocillin over 30 min IV infusion, followed by a 6 g continuous infusion over 24 h. Total and unbound concentrations were measured in plasma (n = 88 and 86) and CSF (n = 88 and 88) samples and used to build a population PK model. Monte Carlo simulations were performed to estimate the PTA at 100% Css>MIC (steady state concentration above the MIC) in CSF. RESULTS: All patients were infected with Enterobacterales with temocillin MICs ≤8 mg/L. The median (min-max) temocillin penetration in CSF was 12.1% (4.3-25.5) at steady state. Temocillin unbound plasma pharmacokinetics were best described by a one-compartment model. PTA for the applied dosing regimen was >90% for bacteria with MIC ≤ 4 mg/L. CONCLUSIONS: The currently approved dose of 6 g by continuous infusion may be adequate for the treatment of ventriculitis by Enterobacterales with MIC ≤ 4 mg/L if considering 100% Css>MIC as the PK/PD target to reach. Higher maintenance doses could help covering higher MICs, but their safety would need to be assessed.


Asunto(s)
Antibacterianos , Ventriculitis Cerebral , Penicilinas , Adulto , Humanos , Ventriculitis Cerebral/tratamiento farmacológico , Estudios Prospectivos , Drenaje , Pruebas de Sensibilidad Microbiana , Enfermedad Crítica , Método de Montecarlo
2.
Antimicrob Agents Chemother ; 66(2): e0214921, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34930026

RESUMEN

Biofilms colonize medical devices and are often recalcitrant to antibiotics. Interkingdom biofilms, where at least a bacterium and a fungus are present, increase the likelihood of therapeutic failures. In this work, a three-species in vitro biofilm model including Staphylococcus aureus, Escherichia coli, and Candida albicans was used to study the activity of the antibiotics moxifloxacin and meropenem, the antifungal caspofungin, and combinations of them against interkingdom biofilms. The culturable cells and total biomass were evaluated to determine the pharmacodynamic parameters of the drug response for the incubation with the drugs alone. The synergic or antagonistic effects (increased/decreased effects) of the combination of drugs were analyzed with the highest-single-agent method. Biofilms were imaged in confocal microscopy after live/dead staining. The drugs had limited activity when used alone against single-, dual-, and three-species biofilms. When used in combination, additive effects against single- and dual-species biofilms and increased effects (synergy) against biomass of three-species biofilms were observed. In addition, the two antibiotics showed different patterns, moxifloxacin being more active when targeting S. aureus and meropenem when targeting E. coli. All these observations were confirmed by confocal microscopy images. Our findings highlight the interest in combining caspofungin with antibiotics against interkingdom biofilms.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Antifúngicos/farmacología , Biopelículas , Candida albicans , Caspofungina/farmacología , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología
3.
J Antimicrob Chemother ; 77(12): 3265-3269, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36124848

RESUMEN

INTRODUCTION: Levofloxacin and rifampicin are the preferred treatment for prosthetic joint infection (PJI) caused by Staphylococcus aureus, especially when managed with implant retention (DAIR). However, a significant variability of success has been reported, which could be related to intrinsic characteristics of the microorganism. Our aim was to evaluate the variability in the anti-biofilm response to levofloxacin and rifampicin in a clinical collection of S. aureus. MATERIAL AND METHODS: Eleven levofloxacin- and rifampicin-susceptible S. aureus isolates causing PJI managed with DAIR were included. Levofloxacin, rifampicin and levofloxacin + rifampicin were tested in an in vitro static biofilm model in microtitre plates, where 48 h biofilms were challenged with antimicrobials during 24 h. Additionally, two genetically similar strains were tested in the CDC Biofilm Reactor, where 48 h biofilms were treated during 56 h. Antimicrobial activity was assessed by viable biofilm-embedded cells recount, and by crystal violet staining. RESULTS: All antimicrobial regimens showed significant anti-biofilm activity, but a notable scattering in the response was observed across all strains (inter-strain coefficient of variation for levofloxacin, rifampicin and levofloxacin + rifampicin of 22.8%, 35.8% and 34.5%, respectively). This variability was tempered with the combination regimen when tested in the biofilm reactor. No correlation was observed between the minimal biofilm eradicative concentration and the antimicrobial activity. Recurrent S. aureus isolates exhibited higher biofilm-forming ability compared with strains from resolved infections (7.6 log10 cfu/cm2±0.50 versus 9.0 log10 cfu±0.07). CONCLUSIONS: Significant variability may be expected in response to levofloxacin and rifampicin among biofilm-embedded S. aureus. A response in the lower range, together with other factors of bad prognosis, could be responsible of treatment failure.


Asunto(s)
Artritis Infecciosa , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/fisiología , Levofloxacino/farmacología , Levofloxacino/uso terapéutico , Rifampin/farmacología , Rifampin/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas
4.
J Antimicrob Chemother ; 77(10): 2742-2753, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36018077

RESUMEN

BACKGROUND: Temocillin plasma protein binding (PPB) in healthy individuals is reported to be ∼85% but had not been studied in patients. OBJECTIVES: To obtain normative data on temocillin PPB in patients in relation to infection and impact of co-medications widely used in ICU. METHODS: Plasma was obtained from healthy individuals (Group #1), non-ICU patients with UTI (Group #2), ICU patients with suspected/confirmed ventriculitis (Group #3) or with sepsis/septic shock (Group #4). Total and unbound temocillin concentrations were measured in spiked samples from temocillin-naive donors (in vitro) or in plasma from temocillin-treated subjects (in vivo). The impact of diluting plasma, using pharmaceutical albumin, or adding drugs potentially competing for PPB was tested in spiked samples. Data were analysed using a modified Hill-Langmuir equation taking ligand depletion into account. RESULTS: Temocillin PPB was saturable in all groups, both in vitro and in vivo. Maximal binding capacity (Bmax) was 1.2-2-fold lower in patients. At 20 and 200 mg/L (total concentrations), the unbound fraction reached 12%-29%, 23%-42% and 32%-52% in Groups #2, #3, #4. The unbound fraction was inversely correlated with albumin and C-reactive protein concentrations. Binding to albumin was 2-3-fold lower than in plasma and non-saturable. Drugs with high PPB but active at lower molar concentrations than temocillin caused minimal displacement, while fluconazole (low PPB but similar plasma concentrations to temocillin) increased up to 2-fold its unbound fraction. CONCLUSIONS: Temocillin PPB is saturable, 2-4-fold lowered in infected patients in relation to disease severity (ICU admission, hypoalbuminaemia, inflammation) and only partially reproducible with albumin. Competition with other drugs must be considered for therapeutic concentrations to be meaningful.


Asunto(s)
Proteína C-Reactiva , Fluconazol , Proteínas Sanguíneas/metabolismo , Humanos , Ligandos , Penicilinas , Preparaciones Farmacéuticas , Unión Proteica
5.
Expert Opin Emerg Drugs ; 27(4): 405-416, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36317695

RESUMEN

INTRODUCTION: Invasive candidiasis or candidemia is a severe infection affecting more than 250,000 people worldwide every year. It is present in up to 16% of ICU patients. The prognosis of these infections is unfavorable, with global death estimated around 50,000 per year, which corresponds to up to 40% depending on patient severity and comorbidities. Therapeutic failure is not rare due to the emergence of multiresistant strains and of new species poorly responsive to current therapies like Candida auris. AREAS COVERED: We first review the positioning of antifungal drugs used to treat candidiasis, namely polyenes, azoles, echinocandins and pyrimidine analogues. We then discuss the progresses brought by new formulations, new derivatives within these classes, compounds acting on new targets or repurposed drugs in terms of pharmacokinetic profile, spectrum of activity, potency, safety or risk of drug-drug interactions. EXPERT OPINION: While new formulations (amphotericin B cochleate) improve oral bioavailability of the corresponding drugs, new azoles or echinocandins offer higher potency including against strains resistant to former generations of drugs. Repurposed drugs show synergism with current therapies in vitro. Results from ongoing and future clinical trials will be decisive to establish the interest for these drugs in our arsenal.


Asunto(s)
Candidemia , Candidiasis Invasiva , Humanos , Candidemia/tratamiento farmacológico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Equinocandinas/uso terapéutico , Candidiasis Invasiva/tratamiento farmacológico , Azoles/farmacología , Azoles/uso terapéutico
6.
Antimicrob Agents Chemother ; 65(12): e0146821, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34570646

RESUMEN

Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections, can invade different types of host cells. To compare the pharmacodynamic properties of antibiotics against intra- and extracellular UPEC, an in vitro model of intracellular infection was established in J774 mouse macrophages infected by the UPEC strain CFT073. We tested antibiotics commonly prescribed against urinary tract infections (gentamicin, ampicillin, nitrofurantoin, trimethoprim, sulfamethoxazole, and ciprofloxacin) and the investigational fluoroquinolone finafloxacin. The metabolic activity of individual bacteria was assessed by expressing the fluorescent reporter protein TIMERbac within CFT073. Concentration-response experiments revealed that all tested antibiotics were much less effective against intracellular bacteria than extracellular ones. Most antibiotics, except fluoroquinolones, were unable to reach a bactericidal effect intracellularly at clinically achievable concentrations. Ciprofloxacin and finafloxacin killed 99.9% of extracellular bacteria at concentrations around the MIC, while for intracellular bacteria, concentrations more than 100× over the MIC were required to achieve a bactericidal effect. Time-kill curves showed that finafloxacin was more rapidly bactericidal in acidic medium than at neutral pH, while the reverse observation was made for ciprofloxacin. Intracellularly, kill curves showed biphasic kinetics for both fluoroquinolones, suggesting the presence of drug-tolerant subpopulations. Flow cytometry analysis of TIMERbac fluorescence revealed a marked heterogeneity in intracellular growth of individual bacteria, suggesting that the presence of subpopulations reaching a state of metabolic dormancy was the main reason for increased antibiotic tolerance of intracellular UPEC.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Ratones , Infecciones Urinarias/tratamiento farmacológico
7.
Artículo en Inglés | MEDLINE | ID: mdl-33318000

RESUMEN

Active efflux confers intrinsic resistance to multiple antibiotics in Pseudomonas aeruginosa, including old disused molecules. Beside resistance, intracellular survival is another reason for failure to eradicate bacteria with antibiotics. We evaluated the capacity of polyaminoisoprenyl potentiators (designed as efflux pump inhibitors [EPIs]) NV716 and NV731 compared to PAßN to restore the activity of disused antibiotics (doxycycline, chloramphenicol [substrates for efflux], and rifampin [nonsubstrate]) in comparison with ciprofloxacin against intracellular P. aeruginosa (strains with variable efflux levels) in THP-1 monocytes exposed over 24 h to antibiotics alone (0.003 to 100× MIC) or combined with EPIs. Pharmacodynamic parameters (apparent static concentrations [Cs] and maximal relative efficacy [Emax]) were calculated using the Hill equation of concentration-response curves. PAßN and NV731 moderately reduced (0 to 4 doubling dilutions) antibiotic MICs but did not affect their intracellular activity. NV716 markedly reduced (1 to 16 doubling dilutions) the MIC of all antibiotics (substrates or not for efflux; strains expressing efflux or not); it also improved their relative potency and maximal efficacy (i.e., lower Cs; more negative Emax) intracellularly. In parallel, NV716 reduced the persister fraction in stationary cultures when combined with ciprofloxacin. In contrast to PAßN and NV731, which act only as EPIs against extracellular bacteria, NV716 can resensitize P. aeruginosa to antibiotics whether they are substrates or not for efflux, both extracellularly and intracellularly. This suggests a complex mode of action that goes beyond a simple inhibition of efflux to reduce bacterial persistence. NV716 appears to be a useful adjuvant, including to disused antibiotics with low antipseudomonal activity, to improve their activity, including against intracellular P. aeruginosa.


Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacología , Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
8.
Artículo en Inglés | MEDLINE | ID: mdl-33468484

RESUMEN

Prosthetic joint infections (PJI) are frequent complications of arthroplasties. Their treatment is made complex by the rapid formation of bacterial biofilms, limiting the effectiveness of antibiotic therapy. In this study, we explore the effect of a tri-enzymatic cocktail (TEC) consisting of an endo-1,4-ß-d-glucanase, a ß-1,6-hexosaminidase, and an RNA/DNA nonspecific endonuclease combined with antibiotics of different classes against biofilms of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli grown on Ti-6Al-4V substrates. Biofilms were grown in Trypticase soy broth (TSB) with 10 g/liter glucose and 20 g/liter NaCl (TGN). Mature biofilms were assigned to a control group or treated with the TEC for 30 min and then either analyzed or reincubated for 24 h in TGN or TGN with antibiotics. The cytotoxicity of the TEC was assayed against MG-63 osteoblasts, primary murine fibroblasts, and J-774 macrophages using the lactate dehydrogenase (LDH) release test. The TEC dispersed 80.3 to 95.2% of the biofilms' biomass after 30 min. The reincubation of the treated biofilms with antibiotics resulted in a synergistic reduction of the total culturable bacterial count (CFU) compared to that of biofilms treated with antibiotics alone in the three tested species (additional reduction from 2 to more than 3 log10 CFU). No toxicity of the TEC was observed against the tested cell lines after 24 h of incubation. The combination of pretreatment with TEC followed by 24 h of incubation with antibiotics had a synergistic effect against biofilms of S. aureus, S. epidermidis, and E. coli Further studies should assess the potential of the TEC as an adjuvant therapy in in vivo models of PJI.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Biopelículas , Escherichia coli , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Staphylococcus epidermidis
9.
Antimicrob Agents Chemother ; 65(12): e0106121, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34543094

RESUMEN

We evaluated antibiotic activity against the intracellular bacterium Coxiella burnetii using an activated THP-1 cell model of infection. At clinically relevant concentrations, the intracellular bacterial load was reduced 300-fold by levofloxacin and finafloxacin, 40-fold by doxycycline, and 4-fold by ciprofloxacin and was unaffected by azithromycin. Acidification of the culture medium reduced antibiotic activity, with the exceptions of doxycycline (no change) and finafloxacin (slight improvement). This model may be used to select antibiotics to be evaluated in vivo.


Asunto(s)
Coxiella burnetii , Fiebre Q , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina , Doxiciclina/farmacología , Humanos , Fiebre Q/tratamiento farmacológico , Células THP-1
10.
Ann Clin Microbiol Antimicrob ; 20(1): 5, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407536

RESUMEN

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii is considered a top priority pathogen by the World Health Organization for combatting increasing antibiotic resistance and development of new drugs. Since it was originally reported in Klebsiella pneumoniae in 2009, the quick spread of the blaNDM-1 gene encoding a New-Delhi metallo-beta-lactamase-1 (NDM-1) is increasingly recognized as a serious threat. This gene is usually carried by large plasmids and has already been documented in diverse bacterial species, including A. baumannii. Here, we report the first detection of a NDM-1-producing A. baumannii strain isolated in Benin. CASE PRESENTATION: A 31-year-old woman was admitted to a surgical unit with a diagnosis of post-cesarean hematoma. An extensively-drug resistant A. baumannii strain solely susceptible to amikacin, colistin and ciprofloxacin, and resistant to several other antibiotics including ceftazidime, imipenem, meropenem, gentamicin, tobramycin, ceftazidime/avibactam, and sulfamethoxazole-trimethoprim, was isolated from the wound. Production of NDM-1 was demonstrated by immunochromatographic testing. Whole genome sequencing of the isolate confirmed the presence of blaNDM-1, but also antibiotic resistance genes against multiple beta-lactamases and other classes of antibiotics, in addition to several virulence genes. Moreover, the blaNDM-1 gene was found to be present in a Tn125 transposon integrated on a plasmid. CONCLUSIONS: The discovery of this extensively-drug resistant A. baumannii strain carrying blaNDM-1 in Benin is worrying, especially because of its high potential risk of horizontal gene transfer due to being integrated into a transposon located on a plasmid. Strict control and prevention measures should be taken, once NDM-1 positive A. baumannii has been identified to prevent transfer of this resistance gene to other Enterobacterales. Capacity building is required by governmental agencies to provide suitable antibiotic treatment options and strategies, in combination with strengthening laboratory services for detection and surveillance of this pathogen.


Asunto(s)
Acinetobacter baumannii/aislamiento & purificación , Secuenciación Completa del Genoma/métodos , beta-Lactamasas/biosíntesis , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/genética , Adulto , Femenino , Humanos , Plásmidos , beta-Lactamasas/genética
11.
Biofouling ; 37(5): 481-493, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225500

RESUMEN

Biofilms are an important medical burden, notably for patients with orthopaedic device-related infections. When polymicrobial, these infections are more lethal and recalcitrant. Inter-kingdom biofilm infections are poorly understood and challenging to treat. Here, an in vitro three-species model including Staphylococcus aureus, Escherichia coli and Candida albicans was developed, to represent part of the diversity observed in orthopaedic infections or other clinical contexts. The importance of fungal hyphae for biofilm formation and virulence factor expression was explored. Two protocols were set up, allowing, or not, for hyphal formation. Culturable cells and biomass were characterised in both models, and biofilms were imaged in bright-field, confocal and electron microscopes. The expression of genes related to virulence, adhesion, exopolysaccharide synthesis and stress response was analysed in early-stage and mature biofilms. It was found that biofilms enriched in hyphae had larger biomass and showed higher expression levels of genes related to bacterial virulence or exopolysaccharides synthesis.


Asunto(s)
Biopelículas , Hifa , Fenómenos Fisiológicos Bacterianos , Candida albicans , Humanos , Staphylococcus aureus
12.
Artículo en Inglés | MEDLINE | ID: mdl-32015047

RESUMEN

Pseudomonas aeruginosa is a major cause of respiratory biofilm-related infections in patients with cystic fibrosis. We developed an in vitro pharmacodynamic model to study the activity of antipseudomonal antibiotics against PAO1 biofilms grown in artificial sputum medium with agar [ASM(+)] versus that against biofilms grown in Trypticase soy broth supplemented with glucose and NaCl (TGN). We measured bacterial counts, metabolic activity (fluorescein diacetate [FDA] hydrolysis), and biomass (crystal violet absorbance). Biofilms grew slower in ASM(+) than in TGN but reached the same CFU counts and metabolic activity in both media and a slightly higher biomass after 48 h in ASM(+) than in TGN. The concentration-response curves of the antibiotics after 24 h of incubation with mature biofilms showed maximal effects ranging from a 3 (ciprofloxacin)- to a 1.5 (ceftazidime, meropenem)-log10-CFU decrease, with tobramycin and colistin showing intermediate values. These maximal reductions in the numbers of CFU were similar in both media for ciprofloxacin and ß-lactams but lower in ASM(+) than in TGN for tobramycin and colistin; they were reached at concentrations lower than the human maximum concentration in plasma for ciprofloxacin and ß-lactams only. The reductions in metabolic activity and in biomass were low in both media. Small-colony variants were selected by tobramycin in ASM(+) and by ciprofloxacin in both media. The model was then successfully applied to 4 isolates from patients with cystic fibrosis. These biofilms showed CFU counts similar to those of PAO1 biofilms in ASM(+) but a higher biomass than PAO1 biofilms in ASM(+) and moderate differences in their susceptibility to antibiotics from that of PAO1 biofilms grown in this medium. This model proved useful to establish the pharmacodynamic profile of drugs against P. aeruginosa biofilms in the context of cystic fibrosis.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Medios de Cultivo/farmacología , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/fisiología
13.
J Antimicrob Chemother ; 75(9): 2650-2656, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32433753

RESUMEN

BACKGROUND: The antibiotic temocillin has recently been rediscovered as a promising therapeutic option against MDR Gram-negative bacteria. However, some aspects of the pharmacokinetic (PK) profile of the drug are still to be elucidated: subcutaneous administration of temocillin might be of interest as an alternative to the intravenous route in selected patients. Similarly, information on the penetration of temocillin into human soft tissues is lacking. OBJECTIVES: To investigate the feasibility and plasma PK of subcutaneous dosing as well as soft tissue PK of temocillin after intravenous administration to healthy volunteers. METHODS: Eight healthy volunteers received 2 g of temocillin both as intravenous and subcutaneous infusion in a randomized two-period crossover study. Concentration-time profiles of total temocillin in plasma (after both routes) and of unbound temocillin in plasma, muscle and subcutis (only after intravenous dosing) were determined up to 12 h post-dose. RESULTS: Subcutaneous dosing caused some infusion site discomfort but resulted in sustained drug concentrations over time with only slightly decreased overall exposure compared with intravenous dosing. Plasma protein binding of temocillin showed concentration-dependent behaviour and was higher than previously reported. Still, unbound drug concentrations in muscle and subcutis determined by microdialysis markedly exceeded those in plasma, suggesting good tissue penetration of temocillin. CONCLUSIONS: The subcutaneous administration of temocillin is a valid and feasible alternative to intravenous dosing. With the description of plasma protein binding and soft tissue PK of temocillin in healthy volunteers, this study provides important information that adds to the ongoing characterization of the PK profile of temocillin and might serve as input for PK/PD considerations.


Asunto(s)
Preparaciones Farmacéuticas , Administración Intravenosa , Estudios Cruzados , Voluntarios Sanos , Humanos , Microdiálisis , Penicilinas
14.
Ann Clin Microbiol Antimicrob ; 19(1): 54, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239061

RESUMEN

BACKGROUND: Surgical site infections are related to high morbidity, mortality and healthcare costs. Because the emergence of multidrug-resistant bacteria in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in these infections and the rate of multidrug-resistant bacteria in six public hospitals in Benin. METHODS: Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. For the antibiotic susceptibility test, we first used the Kirby-Bauer disk diffusion method. The secondary test (by microdilution) used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). RESULTS: We included 304 patients, whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics, S. aureus (28.5%, n = 42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery, the most dominant being E.coli (38.4%, n = 31). Overall, 90.8% (n = 208) of aerobic bacteria were multidrug resistant. Two-thirds of S. aureus (65.3%, n = 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n = 43/62) and 83.3% of K. pneumoniae (n = 25/30). Overall, twelve Gram-negative bacteria (5.24%) showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype. CONCLUSION: This study shows the alarming prevalence of multidrug-resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of such bacteria in Benin, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana , Infección de la Herida Quirúrgica/microbiología , Adolescente , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Benin , Infección Hospitalaria/tratamiento farmacológico , Estudios Transversales , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Salud Pública , Infección de la Herida Quirúrgica/tratamiento farmacológico , Adulto Joven
16.
Clin Infect Dis ; 68(Suppl 3): S213-S222, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30957164

RESUMEN

Fluoroquinolones have been in clinical use for over 50 years with significant efficacy. However, increasing resistance and emergence of some marked adverse events have limited their usage. The most recently approved class member, delafloxacin, is the only available anionic (non-zwitterionic) fluoroquinolone. Its unique molecular structure provides improved in vitro activity against most Gram-positive pathogens, including quinolone-resistant strains, which is further enhanced at acid pH. Delafloxacin shows favorable pharmacological properties, with about 60% bioavailability after oral administration, only mild inhibition of cytochrome P450 3A, and no evidence of cardiac- or phototoxicity in healthy volunteers (tested against positive controls). Its twice daily dosing, suitability for intravenous, oral, or switch dosing, the lack of many clinically significant drug-drug interactions, and acceptable adverse event profile in registration clinical trials supports its use in the treatment of acute bacterial skin and skin structure infections, and potentially in other infections, where resistance to other agents, safety, and/or the need for early discharge is of concern.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Fluoroquinolonas/química , Fluoroquinolonas/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Monitoreo de Drogas , Fluoroquinolonas/administración & dosificación , Fluoroquinolonas/farmacocinética , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
17.
Artículo en Inglés | MEDLINE | ID: mdl-31036685

RESUMEN

Staphylococcus aureus is a highly prevalent pathogen in the respiratory tract of young patients with cystic fibrosis (CF) and causes biofilm-related infections. Here, we set up an in vitro model of a biofilm grown in Trypticase soy broth supplemented with glucose and NaCl (TGN) or in artificial sputum medium (ASM) and used it to evaluate on a pharmacodynamic basis the activity of antibiotics used in CF patients and active on staphylococci (meropenem, vancomycin, azithromycin, linezolid, rifampin, ciprofloxacin, tobramycin). Rheological studies showed that ASM was more elastic than viscous, as was also observed for sputa from CF patients, with elastic and viscous moduli being, respectively, similar to and slightly lower than those of CF sputa. Biofilms formed by methicillin-sensitive S. aureus strain ATCC 25923 and methicillin-resistant S. aureus strain ATCC 33591 reached maturity after 24 h, with biomass (measured by crystal violet staining) and metabolic activity (assessed by following resazurin metabolization) being lower in ASM than in TGN and viability (assessed by bacterial counts) being similar in both media. Full concentration-response curves of antibiotics obtained after 24 h of incubation of biofilms showed that all antibiotics were drastically less potent and less efficient in ASM than in TGN toward viability, metabolic activity, and biomass. Tobramycin selected for small-colony variants, specifically in biofilms grown in ASM; the auxotrophism of these variants could not be established. These data highlight the major influence exerted by the culture medium on S. aureus responsiveness to antibiotics in biofilms. The use of ASM may help to determine effective drug concentrations or to evaluate new therapeutic options against biofilms in CF patients.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fibrosis Quística/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Medios de Cultivo/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Infecciones Estafilocócicas/microbiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-29358297

RESUMEN

Gepotidacin (GSK2140944), a novel triazaacenaphthylene bacterial topoisomerase inhibitor, is currently in clinical development for the treatment of bacterial infections. This study examined in vitro its activity against intracellular Staphylococcus aureus (involved in the persistent character of skin and skin structure infections) by use of a pharmacodynamic model and in relation to cellular pharmacokinetics in phagocytic cells. Compared to oxacillin, vancomycin, linezolid, daptomycin, azithromycin, and moxifloxacin, gepotidacin was (i) more potent intracellularly (the apparent bacteriostatic concentration [Cs ] was reached at an extracellular concentration about 0.7× its MIC and was not affected by mechanisms of resistance to the comparators) and (ii) caused a maximal reduction of the intracellular burden (maximum effect) of about -1.6 log10 CFU (which was better than that caused by linezolid, macrolides, and daptomycin and similar to that caused by moxifloxacin). After 24 h of incubation of infected cells with antibiotics at 100× their MIC, the intracellular persisting fraction was <0.1% with moxifloxacin, 0.5% with gepotidacin, and >1% with the other drugs. The accumulation and efflux of gepotidacin in phagocytes were very fast (kin and kout, ∼0.3 min-1; the plateau was reached within 15 min) but modest (intracellular concentration-to-extracellular concentration ratio, ∼1.6). In cell fractionation studies, about 40 to 60% of the drug was recovered in the soluble fraction and ∼40% was associated with lysosomes in uninfected cells. In infected cells, about 20% of cell-associated gepotidacin was recovered in a sedimentable fraction that also contained bacteria. This study highlights the potential for further study of gepotidacin to fight infections where intracellular niches may play a determining role in bacterial persistence and relapses.


Asunto(s)
Acenaftenos/farmacología , Acenaftenos/farmacocinética , Antibacterianos/farmacología , Antibacterianos/farmacocinética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Staphylococcus aureus/efectos de los fármacos , Azitromicina/farmacocinética , Azitromicina/farmacología , Línea Celular , Daptomicina/farmacocinética , Daptomicina/farmacología , Humanos , Linezolid/farmacocinética , Linezolid/farmacología , Macrólidos/farmacocinética , Macrólidos/farmacología , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacocinética , Moxifloxacino/farmacología , Oxacilina/farmacocinética , Oxacilina/farmacología , Fagocitos/efectos de los fármacos , Células THP-1 , Vancomicina/farmacocinética , Vancomicina/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-29712650

RESUMEN

Staphylococcal biofilms are a major cause of therapeutic failure, especially when caused by multiresistant strains. Oral fusidic acid is currently being redeveloped in the United States for skin, skin structure, and orthopedic infections, in which biofilms play a major role. The aim of this study was to examine the activity of fusidic acid alone or combined with other antistaphylococcal drugs against biofilms made by a reference strain and five clinical isolates of Staphylococcus aureus or Staphylococcus epidermidis in in vitro static and dynamic models (microtiter plates and a CDC reactor) exposed to clinically relevant concentrations. In microtiter plates, antibiotics alone were poorly active, with marked differences among strains. At concentrations mimicking the free-drug human maximum concentration of drug in serum (Cmax), the combination of fusidic acid with linezolid, daptomycin, or vancomycin resulted in increased activity against 4 to 5 strains, while the combination with doxycycline, rifampin, or moxifloxacin increased activity against 1 to 3 strains only. In the CDC reactor, biofilms were grown under constant flow and antibiotic concentrations decreased over time according to human elimination rates. A bactericidal effect was obtained when fusidic acid was combined with daptomycin or linezolid, but not with vancomycin. The higher tolerance of biofilms to antibiotics in the CDC reactor is probably attributable to the more complex architecture they adopt when growing under constant flow. Because biofilms grown in the CDC reactor are considered more similar to those developing in vivo, the data support further testing of combinations of fusidic acid with daptomycin or linezolid in models pertinent to chronic skin, skin structure, or orthopedic infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Daptomicina/farmacología , Ácido Fusídico/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Rifampin/farmacología , Staphylococcus epidermidis/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-29263063

RESUMEN

Linezolid, the first clinically available oxazolidinone antibiotic, causes potentially severe toxicities (myelosuppression, lactic acidosis, and neuropathies) ascribed to impairment of mitochondrial protein synthesis and consecutive mitochondrial dysfunction. Tedizolid, a newly approved oxazolidinone, shows an enhanced activity compared to linezolid but is also a more potent inhibitor of mitochondrial protein synthesis. We compared linezolid and tedizolid for (i) inhibition of the expression of subunit I of cytochrome c-oxidase (CYTox I; Western blot analysis), (ii) cytochrome c-oxidase activity (biochemical assay), (iii) mitochondrial oxidative metabolism (Seahorse technology), and (iv) alteration of mitochondrial ultrastructure (electron microscopy) using HL-60 promyelocytes and THP-1 monocytes exposed to microbiologically (multiples of modal MIC against Staphylococcus aureus) and therapeutically (Cmin - Cmax) pertinent concentrations. Both drugs caused a rapid and complete (48 to 72 h) inhibition of CYTox I expression, cytochrome c-oxidase activity, and spare respiratory capacity, with conspicuous swelling of the mitochondrial matrix and loss of their cristae. Globally, tedizolid was a more potent inhibitor than linezolid. For both drugs, all effects were quickly (48 to 72 h) and fully reversible upon drug withdrawal. Using an alternation of exposure to and withdrawal from drug mimicking their approved schedule of administration (twice daily and once daily [qD] for linezolid and tedizolid, respectively), only partial inhibition of CYTox I expression was noted for up to 96 h. Thus, rapid reversal of toxic effects upon discontinuous administration may mitigate oxazolidinone toxicity. Since tedizolid is given qD, this may help to explain its reported lower preclinical and clinical toxicity.


Asunto(s)
Linezolid/efectos adversos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxazolidinonas/efectos adversos , Tetrazoles/efectos adversos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Células HL-60 , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA