RESUMEN
During weaning, withdrawal of milk replacer is not directly compensated for by an increase in solid feed intake. Therefore, greater fat inclusion in the starter might mitigate this temporary dietary energy decline. However, fat inclusion in solid feeds may generally limit rumen fermentability and development. To address these potentially conflicting outcomes, we conducted 2 experiments to evaluate the effect of supplementing a high-fat extruded pellet mixed with a calf starter on feed intake, performance, and nutrient digestibility in calves. In experiment 1, 60 Holstein bull calves were blocked by serum IgG (2,449 ± 176 mg/dL) and date of arrival (2.5 ± 0.5 d of age). Within each block, calves were randomly assigned to 1 of 3 treatments: a standard control calf starter (CON; 3.1% fat) and mixtures of CON with 10% inclusion of 1 of 2 different high-fat extruded pellets containing 85% of either hydrogenated free palm fatty acids (PFA, 7.1% fat) or hydrogenated rapeseed triglycerides (RFT, 6.7% fat). Calves were offered milk replacer up to 920 g/d until 42 d of age, followed by a gradual weaning period of 7 d. Calves had ad libitum access to the starter diets, straw, and water. No differences were observed between CON, PFA, and RFT calves on body weight (BW) or average daily gain (ADG) until 49 d of age. From weaning (50 d) until 112 d, PFA calves had a greater BW and ADG than RFT and CON animals. Moreover, PFA calves had the highest intakes of starter, straw, calculated metabolizable energy, and crude protein after weaning. Overall, no differences were present in blood ß-hydroxybutyrate and glucose concentrations between treatments; however, calves in the RFT treatment had a higher concentration of insulin-like growth factor-1. In experiment 2, 24 Holstein bull calves at 3 mo of age were assigned to 1 of 8 blocks based on arrival BW and age. Within each block, calves were randomly assigned to 1 of the 3 treatments previously described for experiment 1. Calves on the RFT treatment had the lowest total-tract apparent dry matter and fat digestibility, potentially explaining the differences in performance observed between PFA and RFT calves. Inclusion of the PFA pellet at 10% with a calf starter improved BW, solid feed, and energy intake after weaning. However, these benefits were conditioned by fat source and its digestibility.
Asunto(s)
Alimentación Animal , Factor I del Crecimiento Similar a la Insulina , Ácido 3-Hidroxibutírico , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos , Dieta/veterinaria , Ingestión de Alimentos , Glucosa , Inmunoglobulina G , Masculino , Rumen , Triglicéridos , Agua , DesteteRESUMEN
Net energy and protein systems (hereafter called feed evaluation systems) offer the possibility to formulate rations by matching feed values (e.g., net energy and metabolizable protein) with animal requirements. The accuracy and precision of this approach relies heavily on the quantification of various animal digestive and metabolic responses to dietary changes. Therefore, the aims of the current study were, first, to evaluate the predicted responses to dietary changes of total-tract digestibility (including organic matter, crude protein, and neutral detergent fiber) and nitrogen (N) flows at the duodenum (including microbial N and undigested feed N together with endogenous N) against measurements from published studies by 2 different feed evaluation systems. These feed evaluation systems were the recently updated Institut National de la Recherche Agronomique (INRA, 2018) and the older, yet widely used, National Research Council (NRC, 2001) system. The second objective was to estimate the accuracy and precision of predicting milk yield responses based on values of net energy (NEL) and metabolizable protein (MP) supply predicted by the 2 feed evaluation systems. For this, published studies, with experimentally induced changes in either NEL or MP content, were used to calibrate the relationship of NEL and MP supply, with milk component yields. Based on the slope, root mean square prediction error, and concordance correlation coefficient (CCC), the results obtained show that total nonammonia nitrogen flow at the duodenum was predicted with similar accuracy and precision, but considerably better prediction was achieved when the INRA model was used to predict organic matter and neutral detergent fiber digestibility responses. The average NEL and MP content predicted by both models was similar, but NEL and MP content of individual diets differed substantially between both models as indicated by determination coefficients of 0.45 (NEL content) and 0.50 (MP content). Despite these differences, this work shows that when response equations are calibrated with NEL and MP values either from the INRA model or from the NRC model, the accuracy and precision (slope, root mean square prediction error, and CCC) of the predicted milk component yields responses is similar between the models. The lowest accuracy and precision were observed for milk fat yield response, with CCC values in the range of 0.37 to 0.40, compared with milk lactose and protein yields responses for which CCC values were in the range of 0.75 to 0.81.
Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Fibras de la Dieta/metabolismo , Metabolismo Energético , Leche/metabolismo , Nitrógeno/metabolismo , Animales , Exactitud de los Datos , Dieta/veterinaria , Digestión , Duodeno/metabolismo , Femenino , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Lactancia , Lactosa/metabolismo , Gotas Lipídicas/metabolismo , Leche/química , Proteínas de la Leche/metabolismo , Modelos Estadísticos , National Academy of Sciences, U.S. , Valor Nutritivo , Estados UnidosRESUMEN
The recent trend in the dairy industry toward ad libitum feeding of young calves merits reconsideration of calf milk replacer (CMR) formulations. Additionally, feed intake regulation in young calves provided with ad libitum milk and solid feeds is insufficiently understood. This study was designed to determine the effect of exchanging lactose for fat in CMR on voluntary feed intake and growth performance. Lactose was exchanged for fat on a weight/weight basis, resulting in different energy contents per kilogram of CMR. Thirty-two male calves (1.7 ± 0.12 d of age, 47.6 ± 0.83 kg of body weight) were assigned to 1 of 16 blocks based on arrival date. Within each block, calves were randomly assigned to 1 of 2 treatments. The experimental period was divided into 4 periods. In period 1, until 14 ± 1.7 d of age, calves were individually housed, restricted-fed their assigned CMR treatments at 2.5 to 3 L twice daily, and provided with unlimited access to water, chopped straw, and starter. In period 2, calves were group-housed with 8 calves per pen and received ad libitum access to their assigned CMR treatments, starter feed, chopped wheat straw, and water. During period 3, from 43 until 63 d of age, calves were weaned by restricting CMR allowance in 2 steps, maintaining access to all other feeds. All calves were completely weaned at d 64 of age and were monitored until 77 d of age (period 4). Measurements included the intake of all dietary components, body weight gain, and a selection of blood traits. Increasing fat content at the expense of lactose decreased CMR intake by 10%, whereas total calculated metabolizable energy intake and growth remained equal between treatments. Total solid feed (starter and straw) consumption was not affected by CMR composition. These data indicate that calves fed ad libitum regulate their CMR intake based on energy content. High-fat CMR increased plasma phosphate, nonesterified fatty acids, triglycerides, and bilirubin, whereas plasma glucose remained unchanged. Despite the limited animal numbers in the present experiment, there was a significant decrease in the total number of health events (mainly respiratory) requiring therapeutic intervention and in the total number of therapeutic interventions in calves fed high-fat CMR. Calves appeared to consume CMR based on energy content, with a difference in ad libitum intake proportional to the difference in energy content of the CMR, maintaining equal body weight gain and solid feed intake.
Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Grasas de la Dieta/administración & dosificación , Ingestión de Alimentos , Lactosa/administración & dosificación , Alimentación Animal , Animales , Bovinos/crecimiento & desarrollo , Masculino , Distribución AleatoriaRESUMEN
Mammary gland utilization of AA and other metabolites in response to supplemental energy from protein (PT) and supplemental energy from fat (FT) was tested in a 2 × 2 factorial arrangement using a randomized complete block design. Fifty-six Holstein-Friesian dairy cows were adapted during a 28-d control period to a basal total mixed ration consisting of 34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter (DM) basis. Experimental rations were fed for 28 d immediately following the control period and consisted of (1) low protein, low fat (LP/LF), (2) high protein, low fat (HP/LF), (3) low protein, high fat (LP/HF), and (4) high protein, high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically [net energy (MJ/d) basis] with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on a DM basis) and 0.68 kg/d hydrogenated palm fatty acids on a DM basis. Arterial and venous blood samples were collected on d 28 of both periods. Isoenergetic supplements (MJ/d) of protein and fat independently and additively increased milk yield, PT increased protein yield, and FT increased fat yield. A PT × FT interaction affected arterial concentration of all essential AA (EAA) groups, where they increased in response to PT by a greater magnitude at the LF level (on average 35%) compared with the HF level (on average 14%). Mammary gland plasma flow was unaffected by PT or FT. Supplementation with PT tended to decrease mammary clearance of total EAA and decreased group 1 AA clearance by 19%. In response to PT, mammary uptake of total EAA and group 2 AA increased 12 and 14%, respectively, with significantly higher uptake of Arg, Ile, and Leu. Energy from fat had no effect on mammary clearance or uptake of any AA group. The mammary gland uptake:milk protein output ratio was not affected by FT, whereas PT increased this ratio for EAA and group 2 AA. Arterial plasma insulin concentration decreased in response to FT, in particular on the HP/HF diet, as indicated by a PT × FT interaction. Arterial concentrations of nonesterified fatty acids, triacylglycerol, and long-chain fatty acids increased in response to FT, and concentrations of ß-hydroxybutyrate and acetate decreased in response to FT only at the HP level. Mammary clearance and uptake of triacylglycerol and long-chain fatty acids increased in response to FT. Energy from PT and FT increased lactose yield despite no change in arterial glucose concentration or mammary glucose uptake. Mammary-sequestered glucose with PT or FT was used in the same amount for lactose synthesis, and a positive net mammary glucose balance was found across all treatments. Results presented here illustrate metabolic flexibility of the mammary gland in its use of aminogenic versus lipogenic substrates for milk synthesis.
Asunto(s)
Aminoácidos/metabolismo , Bovinos/metabolismo , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Metabolismo Energético/fisiología , Glándulas Mamarias Animales/metabolismo , Animales , Dieta/veterinaria , Ingestión de Energía , Ácidos Grasos/análisis , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/sangre , Femenino , Lactancia/fisiología , Lactosa/metabolismo , Glándulas Mamarias Animales/irrigación sanguínea , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo , Ensilaje/análisis , Triglicéridos/sangre , Triglicéridos/metabolismoRESUMEN
This study tested the effects of energy from glucogenic (glucose; GG) or lipogenic (palm olein; LG) substrates at low (LMP) and high (HMP) metabolizable protein levels on whole-body energy and N partitioning of dairy cattle. Six rumen-fistulated, second-lactation Holstein-Friesian dairy cows (97 ± 13 d in milk) were randomly assigned to a 6 × 6 Latin square design in which each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of rest. A total mixed ration consisting of 42% corn silage, 31% grass silage, and 27% concentrate (dry matter basis) was formulated to meet 100 and 83% of net energy and metabolizable protein requirements, respectively, and was fed at 90% of ad libitum intake by individual cow. Abomasal infusion treatments were saline (LMP-C), isoenergetic infusions (digestible energy basis) of 1,319 g/d of glucose (LMP-GG), 676 g/d of palm olein (LMP-LG; major fatty acid constituents are palmitic, oleic, and linoleic acid), or 844 g/d of essential AA (HMP-C), or isoenergetic infusions of 1,319 g/d of glucose + 844 g/d of essential AA (HMP-GG) or 676 g/d of palm olein + 844 g/d of essential AA (HMP-LG). The experiment was conducted in climate respiration chambers to determine energy and N balance in conjunction with milk production and composition, nutrient digestibility, and plasma constituents. Infusion of GG and LG decreased dry matter intake, but total gross energy intake from the diet plus infusions was not affected by GG or LG. Furthermore, GG or LG did not affect total milk, protein, or lactose yields. Infusing GG or LG at the HMP level did not affect milk production differently than at the LMP level. Infusion of GG stimulated energy retention in body tissue, increased plasma glucose and insulin concentrations, decreased lipogenic metabolites in plasma, and decreased milk fat yield and milk energy output. Nitrogen intake decreased and milk N efficiency increased in response to GG, and N retention was not affected. Infusion of LG tended to increase metabolizable energy intake, increased milk fat yield and milk energy output, increased plasma triacylglycerides and long-chain fatty acid concentrations, and had no effect on energy retention. Infusion of LG decreased N intake but did not affect milk N efficiency or N retention. Compared with the LMP level, the HMP level increased dry matter intake, gross and metabolizable energy intake, and total milk, fat, protein, and lactose yields. Milk energy output increased at the HMP level, and protein level did not affect total energy retention. Heat production increased at the HMP level, but only when GG and LG were infused. The HMP level increased N intake, milk N output, and plasma urea concentration, tended to increase N retention, and decreased milk N efficiency. Regardless of protein level, GG promoted energy retention and improved milk N efficiency, but not through increased milk protein yield. Infusion of LG partitioned extra energy intake into milk and had no effect on milk N efficiency.
Asunto(s)
Bovinos/fisiología , Ingestión de Energía , Metabolismo Energético , Leche/metabolismo , Nitrógeno/metabolismo , Ensilaje/análisis , Animales , Dieta/veterinaria , Ácidos Grasos/sangre , Femenino , Glucosa/metabolismo , Lactancia , Lactosa/análisis , Lipogénesis , Leche/química , Proteínas de la Leche/análisis , Poaceae , Distribución Aleatoria , Rumen/metabolismo , Zea maysRESUMEN
Current calf milk replacer (CMR) compositions significantly differ from whole milk in their levels of energy, protein, and minerals. Energy source is one of the major differences, as CMR contains high levels of lactose, whereas whole milk contains higher levels of fat. The aim of this study was to determine the effect of partially exchanging lactose for fat on performance, digestibility, and gut permeability in calves fed twice daily on a high feeding plane. Lactose and fat were exchanged in the CMR formulation on a weight-weight basis. The CMR were isonitrogenous but not isoenergetic. A total of 60 male Holstein-Friesian calves were assigned to 1 of 30 blocks based on serum IgG, body weight, and date of collection after birth. Within each block, calves were randomly assigned to 1 of 2 treatments: high fat and high lactose. The CMR was provided twice daily until 49 d of age, followed by a gradual weaning period of 14 d. Starter, straw, and water were available ad libitum throughout the complete study. Exchanging lactose for fat did not affect growth; intakes of starter, straw, water, crude protein, or total energy; or apparent total-tract digestibility of nutrients. Gastrointestinal permeability was assessed by measuring the recovery of lactulose and Cr in 24-h urine and the Cr concentration and lactulose:d-mannitol ratio in serum following an oral pulse dose. Urinary recoveries of Cr and lactulose were generally low in both treatments but were higher in calves fed the high-fat CMR. Accordingly, the serum lactulose:d-mannitol ratio and serum Cr concentrations were higher in calves fed the high-fat CMR. In wk 1 and during the weaning transition, calves fed the high-fat CMR had significantly fewer abnormal fecal scores. In conclusion, exchanging lactose for fat in the CMR did not affect growth performance, total feed intake, or nutrient digestibility. The high-fat CMR was associated with an increase in permeability markers but positively influenced fecal scores in calves.
Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Digestión/fisiología , Ingestión de Energía , Tracto Gastrointestinal/metabolismo , Sustitutos de la Leche/administración & dosificación , Animales , Peso Corporal , Bovinos/crecimiento & desarrollo , Grasas de la Dieta/administración & dosificación , Lactosa/administración & dosificación , Lactosa/metabolismo , Masculino , Leche , Permeabilidad , DesteteRESUMEN
Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.
Asunto(s)
Alimentación Animal , Bovinos/metabolismo , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Metabolismo Energético/genética , Glándulas Mamarias Animales/metabolismo , Respuesta de Proteína Desplegada/genética , Animales , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/análisis , Femenino , Lactancia , Glándulas Mamarias Animales/citología , Leche , Ensilaje , Zea maysRESUMEN
Fifty-six Holstein-Friesian cows were used in a randomized complete block design to test the effects of supplemental energy from protein (PT) and fat (FT) on lactation performance and nutrient digestibility in a 2 × 2 factorial arrangement. During the control period, cows were adapted for 28 d to a basal total mixed ration consisting of 34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter (DM) basis. Experimental rations were fed for 28 d immediately following the control period and consisted of (1) low protein, low fat (LP/LF), (2) high protein, low fat (HP/LF), (3) low protein, high fat (LP/HF), or (4) high protein and high fat (HP/HF). To obtain the HP and HF diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d of rumen-protected protein (soybean + rapeseed, 50:50 mixture on DM basis) and 0.68 kg/d of hydrogenated palm fatty acids (FA) on a DM basis. Milk production and composition, nutrient intake, and apparent digestibility were measured during the final 7 d of the control and experimental periods. No interaction was found between PT and FT on milk production and composition. Yields of milk, fat- and protein-corrected milk, and lactose increased in response to PT and FT and lactose concentration was unaffected by treatment. Milk protein concentration and yield increased in response to PT, and protein yield tended to increase in response to FT. Milk fat concentration and yield increased in response to FT and were unaffected by PT. Milk urea concentration increased and nitrogen efficiency decreased in response to PT. Feed and nitrogen efficiency were highest on the LP/HF diet and both parameters increased in response to FT, whereas milk urea concentration was not affected by FT. Energy from fat increased the concentration and yield of ≥16-carbon FA in milk and decreased the concentration of FA synthesized de novo, but had no effect on their yield. Concentration and yield of de novo-synthesized FA increased in response to PT. Concentration and yield of polyunsaturated FA increased and decreased in response to PT and FT, respectively. Apparent total-tract digestibility of crude fat decreased in response to PT, and FT increased crude protein digestibility. Energy supplementation through rumen-inert hydrogenated palm FA appears to be an efficient feeding strategy to stimulate milk production with regard to feed and nitrogen efficiency compared with supplementing an isoenergetic level of rumen-protected protein.
Asunto(s)
Alimentación Animal , Lactosa/biosíntesis , Leche/enzimología , Nitrógeno/metabolismo , Animales , Bovinos , Dieta , Digestión , Femenino , Lactancia , Rumen , Zea maysRESUMEN
Aggregating rumen degradation characteristics of different carbohydrate components into the term modeled rapidly degradable carbohydrates (mRDC) can simplify diet formulation by accounting for differences in rate and extent of carbohydrate degradation within and between feedstuffs. This study sought to evaluate responses of lactating dairy cows to diets formulated with increasing levels of mRDC, keeping the supply of other nutrients as constant as possible. The mRDC content of feedstuffs was calculated based on a simple rumen model including soluble, washable, and nonwashable but potentially degradable fractions, as well as the fractional degradation and passage rates, of sugar, starch, neutral detergent fiber, and other carbohydrates. The mRDC term effectively represents the total amount of carbohydrates degraded in the rumen within 2 h after ingestion. Fifty-two lactating Holstein cows (of which 4 were rumen fistulated) were assigned to 4 treatments in a 4 × 4 Latin square design. Treatments were fed as a total mixed ration consisting of 25.4% corn silage, 23.1% grass silage, 11.6% grass hay, and 39.9% concentrate on a dry matter basis. Differences in mRDC were created by exchanging nonforage neutral detergent fiber-rich ingredients (mainly sugar beet pulp) with starch-rich ingredients (mainly wheat) and by exchanging corn (slowly degradable starch) with wheat (rapidly degradable starch) in the concentrate, resulting in 4 treatments that varied in dietary mRDC level of 167, 181, 194, or 208 g/kg of dry matter. Level of mRDC did not affect dry matter intake. Fat- and protein-corrected milk production and milk fat and lactose yield were greatest at 181 mRDC and decreased with further increases in mRDC. Milk protein yield and concentration increased with increasing mRDC level. Mean rumen pH and diurnal variation in ruminal pH did not differ between treatments. Total daily meal time and number of visits per meal were smaller at 181 and 194 mRDC. Despite milk production responses, increasing dietary mRDC levels, while maintaining net energy and intestinal digestible protein as well as other nutrients at similar levels, did not influence rumen pH parameter estimates and had minor effects on feeding behavior. These results indicate that aggregating rapidly degradable carbohydrate content into one term may be a simple way to further improve predictability of production responses in practical diet formulation for lactating dairy cows.
Asunto(s)
Alimentación Animal , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Ensilaje , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos , Industria Lechera , Femenino , Alimentos Formulados , Concentración de Iones de Hidrógeno , Lactancia , Poaceae/metabolismo , Rumen/metabolismo , Almidón/metabolismo , Zea maysRESUMEN
Milk responses to dietary change are influenced by the relative production level, that is, the distance between observed production and potential production. The closer the animal is to its potential, the smaller the expected response is to extra nutrients. Therefore, the aim of this work was to provide a method to quantify cow potential, to estimate subsequent responses to changes in nutrient supply. The observed efficiencies in net energy for lactation (NEL) and metabolizable protein (MP) are proposed as a basis to estimate the relative production level of the animal. The rationale for using NEL and MP efficiency (ratios of milk energy yield/NEL above maintenance supply and milk protein yield/MP above maintenance supply) builds on the uniformity of the observed relationships between size of the milk responses and extra NEL supply and MP supply, when centered on a given efficiency. From there, a pivot nutritional situation where MP and NEL efficiency are 0.67 and 1.00, respectively, was defined, from which milk responses could be derived across animals varying in production potential. An implicit assumption of using response equations centered on reference efficiency pivots is that the size of the response to a fixed change in nutrient supply, relative to the pivot, is identical for animals with different production capacities. The proposed approach was evaluated with 2 independent data sets, where different dietary treatments were applied during the whole lactation. In these data sets, MP and NEL above maintenance supply were calculated weekly using the recently updated INRA Systali feed units system. Differences in NEL and MP supply above maintenance between the extreme dietary treatments were large, on average 667 g of MP/d and 13 MJ of NEL/d (3.11 Mcal/d) in the first data set, and 513 g of MP/d and 29 MJ of NEL/d (6.93 Mcal/d) for the second data set. Milk energy yield and milk component yields were predicted with root mean square prediction errors between 7.6 and 13.5% and concordance correlation coefficients between 0.784 and 0.934, respectively. Assessed by the Akaike's information criterion, significant differences existed in the accuracy of prediction for milk energy yield and milk component yields between stages of lactation. However, the effects of stage of lactation were not consistent between data sets and, for most of the predicted variables, relatively small. We concluded that the pivot concept can be used to predict milk energy yield and milk component yields responses to dietary change with a good accuracy for diets that are substantially different and across all stages of lactation.
Asunto(s)
Alimentación Animal , Lactancia , Animales , Bovinos , Dieta , Femenino , Leche , Proteínas de la Leche/farmacologíaRESUMEN
The objective of this study was to investigate the effects of increasing maturity of whole-plant corn at harvest on CH4 emissions by dairy cows consuming corn silage (CS) based diets. Whole-plant corn was harvested at a very early [25% dry matter (DM); CS25], early (28% DM; CS28), medium (32% DM; CS32), and late (40% DM; CS40) stage of maturity. In a randomized block design, 28 lactating Holstein-Friesian dairy cows, of which 8 were fitted with rumen cannula, received 1 of 4 dietary treatments designated as T25, T28, T32, and T40 to reflect the DM contents at harvest. Treatments consisted of (DM basis) 75% CS, 20% concentrate, and 5% wheat straw. Feed intake, digestibility, milk production and composition, energy and N balance, and CH4 production were measured during a 5-d period in climate respiration chambers after an adaptation to the diet for 12 d. Corn silage starch content varied between 275 (CS25) and 385 (CS40) g/kg of DM. Treatments did not affect DM intake (DMI), milk yield, or milk contents. In situ ruminal fractional degradation rate of starch decreased linearly from 0.098 to 0.059/h as maturity increased from CS25 to CS40. Apparent total-tract digestibility of DM, organic matter, crude protein, neutral detergent fiber, crude fat, starch, and gross energy (GE) decreased linearly with maturity. Treatments did not affect ruminal pH, volatile fatty acids, and ammonia concentrations, and volatile fatty acids molar proportions. The concentration of C18:3n-3 in milk fat decreased linearly, and the concentration of C18:2n-6 and the n-6:n-3 ratio increased linearly with maturity. A quadratic response occurred for the total saturated fatty acid concentration and total monounsaturated fatty acid concentration in milk fat. Methane production relative to DMI (21.7, 23.0, 21.0, and 20.1g/kg) and relative to GE intake (0.063, 0.067, 0.063, and 0.060 MJ/MJ; values for T25, T28, T32, and T40, respectively) decreased linearly with maturity. Also, CH4 emission relative to fat- and protein-corrected milk tended to decrease linearly with maturity (13.0, 13.4, 13.2, and 12.1g/kg of fat- and protein-corrected milk, for T25, T28, T32, and T40, respectively). Intake of GE and metabolizable energy, and energy retained, all expressed per unit of metabolic body weight, did not differ among treatments. Nitrogen intake, N use efficiency (milk N/N intake), and N balance were not influenced by treatments. Increasing maturity of whole-plant corn at harvest may offer an effective strategy to decrease CH4 losses with feeding CS without negatively affecting cow performance.
Asunto(s)
Bovinos/fisiología , Metano/biosíntesis , Leche/metabolismo , Ensilaje/análisis , Amoníaco/análisis , Animales , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Ingestión de Energía , Ácidos Grasos/análisis , Ácidos Grasos Volátiles/análisis , Femenino , Lactancia , Leche/química , Proteínas de la Leche/análisis , Nitrógeno/metabolismo , Distribución Aleatoria , Almidón/análisis , Zea maysRESUMEN
The objective of this study was to investigate the effects of starch varying in rate of fermentation and level of inclusion in the diet in exchange for fiber on methane (CH4) production of dairy cows. Forty Holstein-Friesian lactating dairy cows of which 16 were rumen cannulated were grouped in 10 blocks of 4 cows each. Cows received diets consisting of 60% grass silage and 40% concentrate (dry matter basis). Cows within block were randomly assigned to 1 of 4 different diets composed of concentrates that varied in rate of starch fermentation [slowly (S) vs. rapidly (R) rumen fermentable; native vs. gelatinized corn grain] and level of starch (low vs. high; 270 vs. 530g/kg of concentrate dry matter). Results of rumen in situ incubations confirmed that the fractional rate of degradation of starch was higher for R than S starch. Effective rumen degradability of organic matter was higher for high than low starch and also higher for R than S starch. Increased level of starch, but not starch fermentability, decreased dry matter intake and daily CH4 production. Milk yield (mean 24.0±1.02kg/d), milk fat content (mean 5.05±0.16%), and milk protein content (mean 3.64±0.05%) did not differ between diets. Methane expressed per kilogram of fat- and protein-corrected milk, per kilogram of dry matter intake, or as a fraction of gross energy intake did not differ between diets. Methane expressed per kilogram of estimated rumen-fermentable organic matter (eRFOM) was higher for S than R starch-based diets (47.4 vs. 42.6g/kg of eRFOM) and for low than high starch-based diets (46.9 vs. 43.1g/kg of eRFOM). Apparent total-tract digestibility of neutral detergent fiber and crude protein were not affected by diets, but starch digestibility was higher for diets based on R starch (97.2%) compared with S starch (95.5%). Both total volatile fatty acid concentration (109.2 vs. 97.5mM) and propionate proportion (16.5 vs. 15.8mol/100mol) were higher for R starch- compared with S starch-based diets but unaffected by the level of starch. Total N excretion in feces plus urine and N retained were unaffected by dietary treatments, and similarly energy intake and output of energy in milk expressed per unit of metabolic body weight were not affected by treatments. In conclusion, an increased rate of starch fermentation and increased level of starch in the diet of dairy cattle reduced CH4 produced per unit of eRFOM but did not affect CH4 production per unit of feed dry matter intake or per unit of milk produced.
Asunto(s)
Bovinos/fisiología , Fibras de la Dieta/farmacología , Metano/metabolismo , Rumen/metabolismo , Ensilaje/análisis , Almidón/metabolismo , Animales , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Digestión/efectos de los fármacos , Ingestión de Energía , Ácidos Grasos Volátiles/metabolismo , Heces/química , Femenino , Fermentación , Lactancia/fisiología , Leche/química , Proteínas de la Leche/análisis , Poaceae/metabolismo , Almidón/administración & dosificaciónRESUMEN
Dairy cattle farming in temperate regions often relies on grass herbage (GH)-based diets but the effect of several grass management options on enteric CH4 emission has not been fully investigated yet. We investigated the combined effect of N fertilization rate and length of regrowth period of GH (predominantly ryegrass) on CH4 emission from lactating dairy cows. In a randomized block design, 28 lactating Holstein-Friesian dairy cows received a basal diet of GH and compound feed [85:15; dry matter (DM) basis]. Treatments consisted of GH cut after 3 or 5 weeks of regrowth, after receiving either a low (20kg of N/ha) or a high (90kg of N/ha) fertilization rate after initial cut. Feed intake, digestibility, milk production and composition, N and energy balance, and CH4 emission were measured during a 5-d period in climate respiration chambers after an adaptation to the diet for 12d. Cows were restricted-fed during measurements and mean DM intake was 15.0±0.16kg/d. Herbage crude protein content varied between 76 and 161g/kg of DM, and sugar content between 186 and 303g/kg of DM. Fat- and protein-corrected milk (FPCM) and feed digestibility increased with increased N fertilization rates and a shorter regrowth interval. Increasing the N fertilization rate increased daily CH4 emission per cow (+10%) and per unit of DM intake (+9%), tended to increase the fraction of gross energy intake emitted as CH4 (+7%), and (partly because of the low crude protein content for the low fertilized GH) only numerically reduced CH4 per unit of FPCM. The longer regrowth interval increased CH4 emission per unit of FPCM (+14%) compared with the shorter regrowth interval, but did not affect CH4 emission expressed in any other unit. With increasing N fertilization CH4 emission decreased per unit of digestible neutral detergent fiber intake (-13%) but not per unit of digestible organic matter intake. There was no interaction of the effect of N fertilization rate and regrowth interval on CH4 emission, but effects of N fertilization were generally most distinct with GH of 5 wk regrowth. The present results suggest that altering grass quality through an increase of N fertilization and a shorter regrowth interval can reduce CH4 emission in zero-grazing dairy cows, depending on the unit in which it is expressed. The larger amount of CH4 produced per day and cow with the more intensively managed GH is compensated by a higher feed digestibility and FPCM yield.
Asunto(s)
Alimentación Animal/análisis , Lolium/química , Metano/biosíntesis , Nitrógeno/química , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Ingestión de Energía , Metabolismo Energético , Femenino , Fermentación , Concentración de Iones de Hidrógeno , Lactancia , Leche/química , Leche/metabolismo , Proteínas de la Leche/análisis , Rumen/metabolismoRESUMEN
The ability to monitor dairy cow feeding behavior and activity could improve dairy herd management. A 3-dimensional accelerometer (SensOor; Agis Automatisering BV, Harmelen, the Netherlands) has been developed that can be attached to ear identification tags. Based on the principle that behavior can be identified by ear movements, a proprietary model classifies sensor data as "ruminating," "eating," "resting," or "active." The objective of the study was to evaluate this sensor on accuracy and precision. First, a pilot evaluation of agreement between 2 independent observers, recording behavior from 3 cows for a period of approximately 9h each, was performed. Second, to evaluate the sensor, the behavior of 15 cows was monitored both visually (VIS) and with the sensor (SENS), with approximately 20 h of registration per cow, evenly distributed over a 24-h period, excluding milking. Cows were chosen from groups of animals in different lactation stages and parities. Each minute of SENS and VIS data was classified into 1 of 9 categories (8 behaviors and 1 transition behavior) and summarized into 4 behavioral groups, namely ruminating, eating, resting, or active, which were analyzed by calculating kappa (κ) values. For the pilot evaluation, a high level of agreement between observers was obtained, with κ values of ≥ 0.96 for all behavioral categories, indicating that visual observation provides a good standard. For the second trial, relationships between SENS and VIS were studied by κ values on a minute basis and Pearson correlation and concordance correlation coefficient analysis on behavior expressed as percentage of total registration time. Times spent ruminating, eating, resting, and active were 42.6, 15.9, 31.6, and 9.9% (SENS) respectively, and 42.1, 13.0, 30.0, and 14.9% (VIS), respectively. Overall κ for the comparison of SENS and VIS was substantial (0.78), with κ values of 0.85, 0.77, 0.86, and 0.47 for "ruminating," "eating," "resting," and "active," respectively. Pearson correlation and concordance correlation coefficients between SENS and VIS for "ruminating," "eating," "resting," and "active" were 0.93, 0.88, 0.98, and 0.73, and 0.93, 0.75, 0.97, and 0.35, respectively. In conclusion, the results provide strong evidence that the present ear sensor technology can be used to monitor ruminating and resting behavior of freestall-housed dairy cattle. Our results also suggest that this technology shows promise for monitoring eating behavior, whereas more work is needed to determine its suitability to monitor activity of dairy cattle.
Asunto(s)
Sistemas de Identificación Animal/veterinaria , Bovinos , Conducta Alimentaria/fisiología , Monitoreo Fisiológico , Actividad Motora/fisiología , Sistemas de Identificación Animal/instrumentación , Animales , FemeninoRESUMEN
Milk fever is one of the most important metabolic diseases in dairy cattle. Reducing the dietary cation/anion balance (DCAD) with anionic salts is a common prevention strategy. However, many small European farms cannot use total mixed rations (TMR) in the close-up period. Including anionic salts in compound feeds can result in feed refusals and moderate inclusions to preserve feed palatability results in insufficient DCAD reduction. Rumen-protected rice bran induces the adaptation of Ca metabolism in dairy cows by a reduction of Ca intake and by a reduction of the availability of dietary Ca. In the presence of a negative control, rumen-protected rice bran (2.8 kg/day) was compared with a lowered DCAD diet (from 269 to 4 meq/kg DM) in their effect to prevent milk fever. In a randomized block design, 45 multiparous Holstein cows joined the trial sequentially from 21 days before the expected calving date and were observed until the 8th week of lactation. Feed and nutrient intakes were recorded, and Ca, P, Mg in serum and urine, urine pH, serum NEFA and milk production in early lactation were compared. Feeding rumen-protected rice bran before calving improved the recovery of calcaemia after calving and had a positive effect on DMI after calving. The moderately low DCAD diet did not positively influence serum Ca at calving. Calcaemia recovered even later than in control, and cows showed reduced DMI post-calving and higher NEFA levels in the first 36 h after calving. This moderate reduction of DCAD did not provide an intermediate prevention level indicating that DCAD needs to be reduced to the recommended levels to prevent milk fever. Rumen-protected rice bran may be a suitable feed to reduce hypocalcaemia post-partum and can be included in pre-calving compound feeds representing a palatable alternative to anionic salts.
Asunto(s)
Calcio/metabolismo , Bovinos/fisiología , Homeostasis/fisiología , Oryza/química , Periodo Periparto , Rumen/metabolismo , Alimentación Animal/análisis , Animales , Industria Lechera , Dieta/veterinaria , Electrólitos , Femenino , Paridad , Parto , EmbarazoRESUMEN
Fractionation of digesta, as occurs during gastrointestinal transit in chickens, complicates accurate measurements of ileal digestibility using tracers. Dual-tracer methods using separate tracers for solid and fluid digesta phases may improve the accuracy of digestibility measurements when assumptions of the single tracer method are violated. The aim of the present study was to compare the apparent ileal digestibility (AID) of nutrients calculated with single- and dual-tracer methods in chickens fed diets varying in particle size, anticipating digesta phase separation in the proximal gastrointestinal tract. A total of 112 Dekalb White (BW: 1.53 ± 0.107 kg) and 112 Bovans Black (BW: 1.79 ± 0.127 kg) 29-week-old laying hens were distributed over 32 pens (seven birds/pen). Within breed, pens were randomly assigned to one of two experimental diets (coarse vs fine oat hulls; n = 8 replicate pens per diet/breed combination). Diets were supplemented with TiO2 (3 g/kg) and Co-EDTA (2 g/kg). On days 34, 35, or 36, birds were euthanised and digesta from the ileum was collected for tracer and nutrient analyses. Apparent ileal digestibility was subsequently calculated by single- and dual-tracer methods. Although coarse oat hulls were hypothesised to increase the fractionation of solid and fluid digesta phases, no breed or diet × method interactions were found. Using a single tracer method based on TiO2, AID of nitrogen (N) was overestimated by 3%-units (P < 0.01) compared with the dual-tracer method, whereas AID estimates of DM, starch, fat, and non-starch polysaccharides did not differ (P > 0.09) and precision of all AID estimates was improved. In conclusion, these results show that although from a conceptual perspective, dual-tracer methods are presumed to better account for the variation in flow behaviour of different digesta phases, AID estimates obtained by the commonly used single tracer method using solid-phase tracer TiO2 were more precise and only marginally differed from estimates obtained by a dual-tracer method using distinct tracers for solid (TiO2) and liquid (Co-EDTA) digesta phases. Considering technical and economical constraints, the single tracer method may thus be the method of choice in many situations. Only when digestibility of proteins or amino acids is of specific interest, single tracer methods using a solid-phase tracer may not suffice. Nevertheless, for both single- and dual-tracer methods, tracer selection is critical, and the choice of tracers should depend on the nutrient(s) of interest.
Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Animales , Femenino , Ácido Edético/metabolismo , Íleon/metabolismo , Dieta/veterinaria , Digestión , Alimentación Animal/análisisRESUMEN
Milk fever in dairy cows can be prevented by activating Ca homeostasis before calving. Homeostatic adaptation can be achieved by reducing dietary Ca availability. Formaldehyde-treated rice bran was studied to supply rumen protected phytic acid to reduce Ca availability. Twelve multiparous dry cows were used in a 3×3 Latin square change-over design with 5-day periods to test three dietary treatments. Diets consisted of a forage mix (maize silage, grass silage and hay), being 77% of ration dry matter, supplemented with three concentrates: Control (no formaldehyde-treated rice bran), T1 (100% formaldehyde-treated rice bran) and T2 (99.5% formaldehyde-treated rice bran with 0.6% Ca carbonate, to equal Ca content of Control). Dietary treatments did not affect urine pH (8.14, 8.13 and 8.11 for Control, T1 and T2 respectively) or dry matter intake (13.9, 13.7 and 13.8 kg for Control, T1 and T2 respectively). Including formaldehyde-treated rice bran in the diet resulted in lower urinary Ca/creatinine ratio (0.970, 0.457 and 0.618 for Control, T1 and T2 respectively). A sudden increase of urinary Ca excretion took place after withdrawal of T1 and T2 at introduction of Control, peaking on the first day and coming back down progressively in the second and third days. Peak was greatest after T1 and was not observed in transitions between rice bran treatments. This is understood as indirect evidence of activation of intestinal Ca absorption during formaldehyde-treated rice bran feeding, because renal adaptations to changes in blood Ca clearance are immediate and intestinal adaptations delay 2 days. It was concluded that including formaldehyde-treated rice bran in rations before calving may represent a dietary strategy to prevent milk fever without reducing dry matter intake.
Asunto(s)
Alimentación Animal/análisis , Calcio/metabolismo , Bovinos/metabolismo , Oryza/química , Oryza/metabolismo , Rumen/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calcio/orina , Bovinos/sangre , Creatinina/orina , Dieta/veterinaria , Femenino , Homeostasis , Lactancia , Minerales , Factores de TiempoRESUMEN
Adapting Ca homeostasis of dairy cows before calving can prevent milk fever. Rice bran, treated with formaldehyde to prevent ruminal degradation of phytic acid, was fed to heifers to study its effect on Ca homeostasis. For 3 weeks 18 heifers were supplemented 3 kg of two feeds: placebo (PF) and rice bran (RBF), defining three treatments: control (CRT), low dose (LD) and high dose (HD). In weeks 1 and 3, all animals received 3 kg of PF and in week 2: CRT received 3 kg of PF, LD received 1.5 kg of PF and 1.5 kg of RBF and HD received 3 kg of RBF. Treatments did not affect dry matter intake (DMI). Feed intakes and growth rates indicated that all heifers had nutritional requirements that exceeded their Ca intakes. Serum Ca, urinary Ca, calcitriol or hydroxyproline remained unaffected. Urinary Ca was consistently low indicating high renal Ca reabsorption, which is indicative of insufficient Ca supply. Rice bran feed influenced P, Mg and Zn intakes and serum and urine presence of these minerals. Most heifers already presented an upregulated Ca metabolism, being inadequate to study adaptive changes in Ca homeostasis of multiparous dry cows. This metabolic difference can be explanatory to the very low susceptibility of heifers to milk fever, further supporting the induction of homeostatic adaptation before calving to prevent milk fever. Rice bran feed did not reduce DMI, and was not detrimental to P, Mg or Zn status.
Asunto(s)
Bovinos/sangre , Bovinos/metabolismo , Minerales/sangre , Oryza/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Densidad Ósea , Calcio/metabolismo , Dieta/veterinaria , Femenino , LactanciaRESUMEN
At calving, many older cows fail to compensate the sudden demand of calcium by an adequate activation of intestinal absorption. This results in a variable degree of hypocalcaemia. Reducing intestinal availability of calcium during the close-up period can prevent milk fever. Fat-coated rice bran (FCRB) was investigated for its potential to reduce Ca availability in pre-calving cows. Fat-coated rice bran was incubated in situ to estimate ruminal degradation of dry matter and phytic acid. Also, seven dry multiparous dairy cows were used for a feeding trial in three periods of approximately 1 week each: P1: adaptation; P2: feeding of 2 kg of FCRB and P3: withdrawal of FCRB. Feed intake was recorded and daily urine samples were analysed for pH, Ca and creatinine. The bypass fraction of phytic acid (passage rate: 5%/h) was 30%. Fat-coated rice bran depressed dry matter intake in P2, resulting in a lower Ca intake. In P2 urine pH and calcium excretion were lower. Daily calcium excretion decreased after introduction of FCRB, peaked after withdrawal and dropped 2 days later. Changes in urinary Ca excretion by feeding FCRB indicate that FCRB affected Ca homeostasis in dry multiparous dairy cows.
Asunto(s)
Alimentación Animal/análisis , Calcio/orina , Enfermedades de los Bovinos/prevención & control , Dieta/veterinaria , Oryza , Aceites de Plantas , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calcio/metabolismo , Bovinos , Enfermedades de los Bovinos/orina , Industria Lechera , Grasas de la Dieta , Femenino , Aceite de Palma , Parálisis de la Parturienta/prevención & control , EmbarazoRESUMEN
Mechanistic models (MMs) have served as causal pathway analysis and 'decision-support' tools within animal production systems for decades. Such models quantitatively define how a biological system works based on causal relationships and use that cumulative biological knowledge to generate predictions and recommendations (in practice) and generate/evaluate hypotheses (in research). Their limitations revolve around obtaining sufficiently accurate inputs, user training and accuracy/precision of predictions on-farm. The new wave in digitalization technologies may negate some of these challenges. New data-driven (DD) modelling methods such as machine learning (ML) and deep learning (DL) examine patterns in data to produce accurate predictions (forecasting, classification of animals, etc.). The deluge of sensor data and new self-learning modelling techniques may address some of the limitations of traditional MM approaches - access to input data (e.g. sensors) and on-farm calibration. However, most of these new methods lack transparency in the reasoning behind predictions, in contrast to MM that have historically been used to translate knowledge into wisdom. The objective of this paper is to propose means to hybridize these two seemingly divergent methodologies to advance the models we use in animal production systems and support movement towards truly knowledge-based precision agriculture. In order to identify potential niches for models in animal production of the future, a cross-species (dairy, swine and poultry) examination of the current state of the art in MM and new DD methodologies (ML, DL analytics) is undertaken. We hypothesize that there are several ways via which synergy may be achieved to advance both our predictive capabilities and system understanding, being: (1) building and utilizing data streams (e.g. intake, rumination behaviour, rumen sensors, activity sensors, environmental sensors, cameras and near IR) to apply MM in real-time and/or with new resolution and capabilities; (2) hybridization of MM and DD approaches where, for example, a ML framework is augmented by MM-generated parameters or predicted outcomes and (3) hybridization of the MM and DD approaches, where biological bounds are placed on parameters within a MM framework, and the DD system parameterizes the MM for individual animals, farms or other such clusters of data. As animal systems modellers, we should expand our toolbox to explore new DD approaches and big data to find opportunities to increase understanding of biological systems, find new patterns in data and move the field towards intelligent, knowledge-based precision agriculture systems.