Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 544(7650): 353-356, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28425998

RESUMEN

The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen's disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a 'perfect storm' that is able to rapidly extirpate highly susceptible salamander populations across Europe.


Asunto(s)
Quitridiomicetos/patogenicidad , Urodelos/microbiología , Animales , Anuros/microbiología , Bélgica , Quitridiomicetos/inmunología , Quitridiomicetos/aislamiento & purificación , Quitridiomicetos/fisiología , Reservorios de Enfermedades/microbiología , Monitoreo del Ambiente , Femenino , Especies Introducidas , Masculino , Dinámica Poblacional , Maduración Sexual , Esporas Fúngicas/crecimiento & desarrollo , Urodelos/inmunología
2.
Ecol Lett ; 24(1): 27-37, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33022129

RESUMEN

While epizootics increasingly affect wildlife, it remains poorly understood how the environment shapes most host-pathogen systems. Here, we employ a three-step framework to study microclimate influence on ectotherm host thermal behaviour, focusing on amphibian chytridiomycosis in fire salamanders (Salamandra salamandra) infected with the fungal pathogen Batrachochytrium salamandrivorans (Bsal). Laboratory trials reveal that innate variation in thermal preference, rather than behavioural fever, can inhibit infection and facilitate salamander recovery under humidity-saturated conditions. Yet, a 3-year field study and a mesocosm experiment close to the invasive Bsal range show that microclimate constraints suppress host thermal behaviour favourable to disease control. A final mechanistic model, that estimates range-wide, year-round host body temperature relative to microclimate, suggests that these constraints are rule rather than exception. Our results demonstrate how innate host defences against epizootics may remain constrained in the wild, which predisposes to range-wide disease outbreaks and population declines.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Microclima , Micosis/prevención & control , Micosis/veterinaria , Urodelos
3.
Emerg Infect Dis ; 27(10): 2686-2690, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34545798

RESUMEN

Toxin-producing Corynebacterium ulcerans, a causative agent of diphtheria in humans, was isolated from 53 hedgehogs in Belgium during the spring of 2020. Isolates showed low levels of acquired antimicrobial drug resistance. Strain diversity suggests emergence from an endemic situation. These findings stress the need for raising public awareness and improved wildlife disease surveillance.


Asunto(s)
Infecciones por Corynebacterium , Erizos , Animales , Corynebacterium/genética , Infecciones por Corynebacterium/diagnóstico , Infecciones por Corynebacterium/epidemiología , Toxina Diftérica , Humanos
4.
Arch Microbiol ; 203(5): 2119-2127, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33606040

RESUMEN

Gastrointestinal microbiota fulfill pivotal roles in providing a host with nutrition and protection from pathogenic microorganisms. Up to date, most microbiota research has focused on humans and other mammals, whereas birds and especially wild birds lag behind. Within the field of the avian gut microbiome, research is heavily biased towards poultry. In this study, we analyzed the gut microbiome of the Eurasian nuthatch (Sitta europaea), using faecal samples of eight nestlings originating from three nuthatch nests in the south of Ghent (Belgium), using Illumina sequencing of the 16S rRNA gene. Relative frequency analysis showed a dominance of Firmicutes and Actinobacteria and to a lesser extent Proteobacteria. Bacteroidetes and other phyla were relatively rare. At higher taxonomic levels, a high degree of inter-individual variation in terms of overall microbiota community structure as well as dominance of certain bacteria was observed, but with a higher similarity for the nestlings sharing the same nest. When comparing the nuthatch faecal microbiome to that of great tit nestlings that were sampled during the same breeding season and in the same forest fragment, differences in the microbial community structure were observed, revealing distinct dissimilarities in the relative abundancy of taxa between the two bird species. This study is the first report on the nuthatch microbiome and serves as a reference study for nuthatch bacterial diversity and can be used for targeted screening of the composition and general functions of the avian gut microbiome.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal , Passeriformes/microbiología , Actinobacteria/genética , Animales , Bacterias/genética , Bacteroidetes/genética , Biodiversidad , Aves/microbiología , Firmicutes/genética , Microbioma Gastrointestinal/genética , Proteobacteria/clasificación , ARN Ribosómico 16S/genética
5.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135150

RESUMEN

Escalating occurrences of emerging infectious diseases underscore the importance of understanding microbiome-pathogen interactions. The amphibian cutaneous microbiome is widely studied for its potential to mitigate disease-mediated amphibian declines. Other microbial interactions in this system, however, have been largely neglected in the context of disease outbreaks. European fire salamanders have suffered dramatic population crashes as a result of the newly emerged Batrachochytrium salamandrivorans (Bsal). In this paper, we investigate microbial interactions on multiple fronts within this system. We show that wild, healthy fire salamanders maintain complex skin microbiotas containing Bsal-inhibitory members, but these community are present at a remarkably low abundance. Through experimentation, we show that increasing bacterial densities of Bsal-inhibiting bacteria via daily addition slowed disease progression in fire salamanders. Additionally, we find that experimental-Bsal infection elicited subtle changes in the skin microbiome, with selected opportunistic bacteria increasing in relative abundance resulting in septicemic events that coincide with extensive destruction of the epidermis. These results suggest that fire salamander skin, in natural settings, maintains bacterial communities at numbers too low to confer sufficient protection against Bsal, and, in fact, the native skin microbiota can constitute a source of opportunistic bacterial pathogens that contribute to pathogenesis. By shedding light on the complex interaction between the microbiome and a lethal pathogen, these data put the interplay between skin microbiomes and a wildlife disease into a new perspective.


Asunto(s)
Quitridiomicetos/fisiología , Dermatomicosis/veterinaria , Microbiota , Piel/microbiología , Urodelos , Animales , Dermatomicosis/microbiología , Alemania
6.
Pharm Res ; 33(2): 384-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26514579

RESUMEN

PURPOSE: The human pathogen Chlamydia trachomatis is worldwide the leading cause of bacterial sexually transmitted disease. Nasal or vaginal nucleic acid vaccination is a promising strategy for controlling genital Chlamydia trachomatis infections. Since naked nucleic acids are generally not efficiently taken up by cells, they are often complexed with carriers that facilitate their intracellular delivery. METHODS: In the current study, we screened a variety of commonly used non-viral gene delivery carriers for their ability to transfect newborn pig tracheal cells. The effect of aerosolization on the physicochemical properties and transfection efficiency of the complexes was also evaluated in vitro. Subsequently, a pilot experiment was performed in which the selected complexes were aerosolized in the vaginal tract of pigs. RESULTS: Both mRNA and pDNA containing lipofectamine and ADM70 complexes showed promise for protein expression in vitro, before and after aerosolization. In vivo, only lipofectamine/pDNA complexes resulted in high protein expression levels 24 h following aerosolization. This correlates to the unexpected observation that the presence of vaginal mucus increases the efficiency of lipofectamine/pDNA complexes 3-fold, while the efficiency of lipofectamine/mRNA complexes and ADM70/mRNA and ADM70/pDNA complexes decreased. CONCLUSIONS: As aerosolization was an easy and effective method to deliver complexes to the vaginal tract of pigs, we believe this application technique has future potential for both vaginal and perhaps nasal vaccination using non-viral gene delivery vectors.


Asunto(s)
ADN/administración & dosificación , Técnicas de Transferencia de Gen , Plásmidos/administración & dosificación , ARN Mensajero/administración & dosificación , Vagina/metabolismo , Aerosoles/química , Animales , Línea Celular , ADN/genética , Portadores de Fármacos/química , Femenino , Plásmidos/genética , ARN Mensajero/genética , Porcinos , Transfección
7.
Front Microbiol ; 13: 790189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356520

RESUMEN

Despite the microbiome's key role in health and fitness, little is known about the environmental factors shaping the gut microbiome of wild birds. With habitat fragmentation being recognised as a major threat to biological diversity, we here determined how forest structure influences the bacterial species richness and diversity of wild great tit nestlings (Parus major). Using an Illumina metabarcoding approach which amplifies the 16S bacterial ribosomal RNA gene, we measured gut microbiota diversity and composition from 49 great tit nestlings, originating from 23 different nests that were located in 22 different study plots across a gradient of forest fragmentation and tree species diversity. Per nest, an average microbiome was determined on which the influence of tree species (composition and richness) and forest fragmentation (fragment area and edge density) was examined and whether this was linked to host characteristics (body condition and fledging success). We found an interaction effect of edge density with tree species richness or composition on both the microbial richness (alpha diversity: Chao1 and Shannon) and community structure (beta diversity: weighted and unweighted UniFrac). No significant short-term impact was observed of the overall faecal microbiome on host characteristics, but rather an adverse effect of specific bacterial genera on fledging success. These results highlight the influence of environmental factors on the microbial richness as well as the phylogenetic diversity during a life stage where the birds' microbiota is shaped, which could lead to long-term consequences for host fitness.

8.
Sci Total Environ ; 823: 153800, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35150694

RESUMEN

Despite devastating effects on global biodiversity, efficient mitigation strategies against amphibian chytridiomycosis are lacking. Since the free-living pathogenic zoospores of Batrachochytrium dendrobatidis (Bd), the infective stage of this disease, can serve as a nutritious food source for components of zooplankton communities, these groups may act as biological control agents by eliminating zoospores from the aquatic environment. Such pathogen-predator interaction is, however, embedded in the aquatic food web structure and is therefore affected by abiotic factors interfering with these networks. Heavy metals, released from both natural and anthropogenic sources, are widespread contaminants of aquatic ecosystems and may interfere with planktonic communities and thus pathogen elimination rates. We investigated the interaction between zooplankton communities and chytridiomycosis infections in a Flemish agricultural region. Moreover, we also investigated the impact of heavy metal contamination, that was previously investigated in the region and presented in recent work, on zooplankton assemblages and chytridiomycosis infections. Finally, we tested the effect of sublethal concentrations of copper and zinc on Bd removal rates by Daphnia magna in a laboratory assay. Although zinc, copper, nickel and chromium were widely abundant pollutants, heavy metals were no driving force for zooplankton assemblages at our study locations. Moreover, our field survey did not reveal indirect effects of zooplankton assemblages on chytridiomycosis infections. However, sampling occasions testing negative for Bd showed a higher degree of copper contamination compared to positive sampling occasions, indicating a potential inhibitory effect of copper on Bd prevalence. Finally, whereas D. magna significantly reduced zoospore densities in its environment, sublethal concentrations of copper and zinc showed no interference with pathogen removal in the laboratory assay. Our results provide perspectives for further research on such a biological control strategy against chytridiomycosis by optimizing environmental conditions for pathogen predation.


Asunto(s)
Quitridiomicetos , Metales Pesados , Anfibios , Animales , Ecosistema , Metales Pesados/toxicidad , Zooplancton
9.
Nat Commun ; 11(1): 5393, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106491

RESUMEN

Wildlife diseases are contributing to the current Earth's sixth mass extinction; one disease, chytridiomycosis, has caused mass amphibian die-offs. While global spread of a hypervirulent lineage of the fungus Batrachochytrium dendrobatidis (BdGPL) causes unprecedented loss of vertebrate diversity by decimating amphibian populations, its impact on amphibian communities is highly variable across regions. Here, we combine field data with in vitro and in vivo trials that demonstrate the presence of a markedly diverse variety of low virulence isolates of BdGPL in northern European amphibian communities. Pre-exposure to some of these low virulence isolates protects against disease following subsequent exposure to highly virulent BdGPL in midwife toads (Alytes obstetricans) and alters infection dynamics of its sister species B. salamandrivorans in newts (Triturus marmoratus), but not in salamanders (Salamandra salamandra). The key role of pathogen virulence in the complex host-pathogen-environment interaction supports efforts to limit pathogen pollution in a globalized world.


Asunto(s)
Anuros/microbiología , Quitridiomicetos/patogenicidad , Micosis/veterinaria , Salamandridae/microbiología , Urodelos/microbiología , Animales , Quitridiomicetos/clasificación , Quitridiomicetos/fisiología , Micosis/microbiología , Virulencia
10.
PLoS One ; 13(10): e0204022, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30286089

RESUMEN

The hatching success of a bird's egg is one of the key determinants of avian reproductive success, which may be compromised by microbial infections causing embryonic death. During incubation, outer eggshell bacterial communities pose a constant threat of pathogen translocation and embryo infection. One of the parental strategies to mitigate this threat is the incorporation of maternal immune factors into the egg albumen and yolk. It has been suggested that habitat changes like forest fragmentation can affect environmental factors and life-history traits that are linked to egg contamination. This study aims at investigating relationships between microbial pressure, immune investment and hatching success in two abundant forest bird species and analyzing to what extent these are driven by extrinsic (environmental) factors. We here compared (1) the bacterial load and composition on eggshells, (2) the level of immune defenses in eggs, and (3) the reproductive success between great (Parus major) and blue (Cyanistes caeruleus) tits in Belgium and examined if forest fragmentation affects these parameters. Analysis of 70 great tit and 34 blue tit eggshells revealed a similar microbiota composition (Enterobacteriaceae, Lactobacillus spp., Firmicutes and Bacteroidetes), but higher bacterial loads in great tits. Forest fragmentation was not identified as an important explanatory variable. Although a significant negative correlation between hatching success and bacterial load on the eggshells in great tits corroborates microbial pressure to be a driver of embryonic mortality, the overall hatching success was only marginally lower than in blue tits. This may be explained by the significantly higher levels of lysozyme and IgY in the eggs of great tits, protecting the embryo from increased infection pressure. Our results show that immune investment in eggs is suggested to be a species-specific adaptive trait that serves to protect hatchlings from pathogen pressure, which is not directly linked to habitat fragmentation.


Asunto(s)
Bacterias/clasificación , Cáscara de Huevo/microbiología , Inmunoglobulinas/metabolismo , Muramidasa/metabolismo , Passeriformes/fisiología , Reproducción , Animales , Bacterias/aislamiento & purificación , Carga Bacteriana , Bacteroidetes/aislamiento & purificación , Cáscara de Huevo/inmunología , Cáscara de Huevo/fisiología , Enterobacteriaceae/aislamiento & purificación , Femenino , Firmicutes/aislamiento & purificación , Bosques , Lactobacillus/aislamiento & purificación , Passeriformes/inmunología , Passeriformes/microbiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA