Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 153(4): 731-6, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663771

RESUMEN

Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training.


Asunto(s)
Curriculum , Educación de Postgrado , Desarrollo de Programa , Facultades de Medicina , Ciencia/educación , Educación de Postgrado/métodos , Educación de Postgrado/tendencias
2.
Proc Natl Acad Sci U S A ; 121(24): e2400732121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838021

RESUMEN

Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila melanogaster , Transducción de Señal , Animales , AMP Cíclico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Humanos , Neuronas Motoras/metabolismo
3.
Hum Mol Genet ; 32(9): 1483-1496, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36547263

RESUMEN

Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.


Asunto(s)
Enfermedad de Huntington , Integrinas , Humanos , Integrinas/metabolismo , Células Endoteliales/metabolismo , Enfermedad de Huntington/patología , Neuroglía/metabolismo , Barrera Hematoencefálica/metabolismo , Matriz Extracelular/metabolismo
4.
RNA Biol ; 18(7): 1014-1024, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33586621

RESUMEN

Environmental fitness is an essential component of animal survival. Fitness is achieved through responsive physiological plasticity of tissues across the entire body, and particularly in the nervous system. At the molecular level, neural plasticity is mediated via gene-environmental interactions whereby developmental cues and experience dependent input adapt neuronal function to ever changing demands. To this end, neuronal gene regulation must be coupled to changes in neural activity. Seminal discoveries of the 20th century demonstrated neural activity modifies gene expression through calcium-dependent gene transcription. Building on this model, recent work over the last two decades shows that mRNA products of transcriptional programming continue to be regulated in the neuron through the activity-dependent post-transcriptional action of microRNAs (miRNAs). miRNAs are special post-transcriptional regulators that can tune gene expression within the spatial and temporal requirements of synaptic compartments. This mode of gene regulation has proven to be essential for synaptic function and plasticity as miRNA loss of function is highly associated with neural disease. In this review we will discuss current perspective on the link between presynaptic plasticity and miRNA biogenesis in the neuron.


Asunto(s)
MicroARNs/genética , Enfermedades Neurodegenerativas/genética , Plasticidad Neuronal/genética , Neuronas/metabolismo , ARN Mensajero/genética , Adaptación Fisiológica/genética , Animales , Calcio/metabolismo , Señalización del Calcio , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Aptitud Genética/fisiología , Humanos , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Sinapsis/metabolismo , Transmisión Sináptica
5.
Nat Rev Mol Cell Biol ; 10(5): 332-43, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19373241

RESUMEN

The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.


Asunto(s)
Conos de Crecimiento/fisiología , Actinas/metabolismo , Animales , Citoesqueleto/metabolismo , Conos de Crecimiento/metabolismo , Humanos , Microtúbulos/metabolismo , Unión Proteica
6.
J Cell Sci ; 129(7): 1477-89, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906422

RESUMEN

Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de la Membrana/metabolismo , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis/fisiología , Movimiento Celular/fisiología , Citocinas/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Endocitosis/fisiología , Activación Enzimática , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Serpinas/metabolismo , Transducción de Señal/genética , Uniones Estrechas/fisiología
7.
PLoS Genet ; 11(5): e1005194, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25993106

RESUMEN

RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila/genética , MicroARNs/metabolismo , Folículo Ovárico/metabolismo , Interferencia de ARN , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , MicroARNs/genética , Folículo Ovárico/citología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
8.
Genes Dev ; 24(7): 625-35, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20360381

RESUMEN

Post-transcriptional regulatory mechanisms have emerged as a critical component underlying the diversification and spatiotemporal control of the proteome during the establishment of precise neuronal connectivity. These mechanisms have been shown to be important for virtually all stages of assembling a neural network, from neurite guidance, branching, and growth to synapse morphogenesis and function. From the moment a gene is transcribed, it undergoes a series of post-transcriptional regulatory modifications in the nucleus and cytoplasm until its final deployment as a functional protein. Initially, a message is subjected to extensive structural regulation through alternative splicing, which is capable of greatly expanding the protein repertoire by generating, in some cases, thousands of functionally distinct isoforms from a single gene locus. Then, RNA packaging into neuronal transport granules and recognition by RNA-binding proteins and/or microRNAs is capable of restricting protein synthesis to selective locations and under specific input conditions. This ability of the post-transcriptional apparatus to expand the informational content of a cell and control the deployment of proteins in both spatial and temporal dimensions is a feature well adapted for the extreme morphological properties of neural cells. In this review, we describe recent advances in understanding how post-transcriptional regulatory mechanisms refine the proteomic complexity required for the assembly of intricate and specific neural networks.


Asunto(s)
Neurogénesis/fisiología , Neuronas/metabolismo , Procesamiento Postranscripcional del ARN/genética , Empalme Alternativo , Animales , Humanos , MicroARNs/metabolismo , Red Nerviosa/embriología , Neurogénesis/genética , Neuronas/citología , Biosíntesis de Proteínas/fisiología , Transporte de ARN/fisiología , Sinapsis/metabolismo
9.
Development ; 141(9): 1864-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24718988

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play important roles in nervous system development and physiology. However, our understanding of the strategies by which miRNAs control synapse development is limited. We find that the highly conserved miRNA miR-8 regulates the morphology of presynaptic arbors at the Drosophila neuromuscular junction (NMJ) through a postsynaptic mechanism. Developmental analysis shows that miR-8 is required for presynaptic expansion that occurs in response to larval growth of the postsynaptic muscle targets. With an in vivo sensor, we confirm our hypothesis that the founding member of the conserved Ena/VASP (Enabled/Vasodilator Activated Protein) family is regulated by miR-8 through a conserved site in the Ena 3' untranslated region (UTR). Synaptic marker analysis and localization studies suggest that Ena functions within the subsynaptic reticulum (SSR) surrounding presynaptic terminals. Transgenic lines that express forms of a conserved mammalian Ena ortholog further suggest that this localization and function of postsynaptic Ena/VASP family protein is dependent on conserved C-terminal domains known to mediate actin binding and assembly while antagonizing actin-capping proteins. Ultrastructural analysis demonstrates that miR-8 is required for SSR morphogenesis. As predicted by our model, we find that Ena is both sufficient and necessary to account for miR-8-mediated regulation of SSR architecture, consistent with its localization in this compartment. Finally, electrophysiological analysis shows that miR-8 is important for spontaneous neurotransmitter release frequency and quantal content. However, unlike the structural phenotypes, increased expression of Ena fails to mimic the functional defects observed in miR-8-null animals. Together, these findings suggest that miR-8 limits the expansion of presynaptic terminals during larval synapse development through regulation of postsynaptic actin assembly that is independent of changes in synapse physiology.


Asunto(s)
Actinas/metabolismo , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , Sinapsis/metabolismo , Proteínas de Capping de la Actina/metabolismo , Animales , Proteínas de Unión al ADN/química , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Regulación de la Expresión Génica , Larva/metabolismo , MicroARNs/genética , Morfogénesis , Mutación/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Polimerizacion , Estructura Terciaria de Proteína , Transporte de Proteínas , Sinapsis/ultraestructura , Transmisión Sináptica
10.
PLoS Genet ; 9(11): e1003958, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24278035

RESUMEN

Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3'-5' cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1(st) and 2(nd) chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man.


Asunto(s)
Drosophila melanogaster/genética , Trastornos de la Memoria/genética , Neurofibromatosis 1/genética , Quinasa de Linfoma Anaplásico , Animales , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Trastornos de la Memoria/patología , Mutación , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/fisiopatología , Unión Neuromuscular/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(26): E2371-80, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23757500

RESUMEN

The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.


Asunto(s)
Proteínas de Drosophila/genética , Genes de Insecto , Proteínas de Unión al ARN/genética , Animales , Animales Modificados Genéticamente , Redes Reguladoras de Genes , Humanos , Bases del Conocimiento , Unión Neuromuscular/genética , Fenotipo , Interferencia de ARN , Especificidad de la Especie , Atrofias Musculares Espinales de la Infancia/genética
12.
J Neurosci ; 34(3): 969-79, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431455

RESUMEN

A crucial step in the development of the vertebrate visual system is the branching of retinal ganglion cell (RGC) axons within their target, the superior colliculus/tectum. A major player in this process is the neurotrophin brain-derived neurotrophic factor (BDNF). However, the molecular basis for the signaling pathways mediating BDNF action is less well understood. As BDNF exerts some of its functions by controlling the expression of microRNAs (miRNAs), we investigated whether miRNAs are also involved in BDNF-mediated retinal axon branching. Here, we demonstrate that the expression pattern of miRNA-132 in the retina is consistent with its involvement in this process, and that BDNF induces the upregulation of miRNA-132 in retinal cultures. Furthermore, in vitro gain-of-function and loss-of-function approaches in retinal cultures reveal that miRNA-132 mediates axon branching downstream of BDNF. A known target of miRNA-132 is the Rho family GTPase-activating protein, p250GAP. We find that p250GAP is expressed in RGC axons and mediates the effects of miRNA-132 in BDNF-induced branching. BDNF treatment or overexpression of miRNA-132 leads to a reduction in p250GAP protein levels in retinal cultures, whereas the overexpression of p250GAP abolishes BDNF-induced branching. Finally, we used a loss-of-function approach to show that miRNA-132 affects the maturation of RGC termination zones in the mouse superior colliculus in vivo, while their topographic targeting remains intact. Together, our data indicate that BDNF promotes RGC axon branching during retinocollicular/tectal map formation via upregulation of miRNA-132, which in turn downregulates p250GAP.


Asunto(s)
Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas Activadoras de GTPasa/fisiología , MicroARNs/fisiología , Células Ganglionares de la Retina/metabolismo , Animales , Axones/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Femenino , Proteínas Activadoras de GTPasa/deficiencia , Ratones , Ratones Endogámicos C57BL , Embarazo , Células Ganglionares de la Retina/efectos de los fármacos
13.
Development ; 139(15): 2821-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22745315

RESUMEN

microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes. Such connections allowed us to validate several likely targets for miRNA-induced phenotypes. Importantly, few of these phenotypes could be predicted from computationally predicted target lists, thus highlighting the value of whole-animal readouts of miRNA activities. Finally, we provide an example of the relevance of these data to miRNA loss-of-function conditions. Whereas misexpression of several K box miRNAs inhibited Notch pathway activity, reciprocal genetic interaction tests with miRNA sponges demonstrated endogenous roles of the K box miRNA family in restricting Notch signaling. In summary, we provide extensive evidence that misexpression of individual miRNAs often induces specific mutant phenotypes that can guide their functional study. By extension, these data suggest that the deregulation of individual miRNAs in other animals may frequently yield relatively specific phenotypes during disease conditions.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Bases de Datos Genéticas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Perfilación de la Expresión Génica , Genoma , Masculino , Modelos Biológicos , Fenotipo , Receptores Notch/metabolismo , Transducción de Señal , Transgenes , Alas de Animales/fisiología
14.
J Neurosci ; 33(13): 5821-33, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536094

RESUMEN

MicroRNA (miRNA)-mediated gene regulation plays a key role in brain development and function. But there are few cases in which the roles of individual miRNAs have been elucidated in behaving animals. We report a miR-276a::DopR regulatory module in Drosophila that functions in distinct circuits for naive odor responses and conditioned odor memory. Drosophila olfactory aversive memory involves convergence of the odors (conditioned stimulus) and the electric shock (unconditioned stimulus) in mushroom body (MB) neurons. Dopamine receptor DopR mediates the unconditioned stimulus inputs onto MB. Distinct dopaminergic neurons also innervate ellipsoid body (EB), where DopR function modulates arousal to external stimuli. We demonstrate that miR-276a is required in MB neurons for memory formation and in EB for naive responses to odors. Both roles of miR-276a are mediated by tuning DopR expression. The dual role of this miR-276a::DopR genetic module in these two neural circuits highlights the importance of miRNA-mediated gene regulation within distinct circuits underlying both naive behavioral responses and memory.


Asunto(s)
Reacción de Prevención/fisiología , MicroARNs/metabolismo , Cuerpos Pedunculados/citología , Neuronas/fisiología , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Electrochoque/efectos adversos , Embrión no Mamífero/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Calor , Masculino , MicroARNs/genética , Mutación/genética , Odorantes , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Neurosci ; 33(45): 17937-50, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24198381

RESUMEN

At the Drosophila neuromuscular junction (NMJ), the loss of retrograde, trans-synaptic BMP signaling causes motoneuron terminals to have fewer synaptic boutons, whereas increased neuronal activity results in a larger synapse with more boutons. Here, we show that an early and transient BMP signal is necessary and sufficient for NMJ growth as well as for activity-dependent synaptic plasticity. This early critical period was revealed by the temporally controlled suppression of Mad, the SMAD1 transcriptional regulator. Similar results were found by genetic rescue tests involving the BMP4/5/6 ligand Glass bottom boat (Gbb) in muscle, and alternatively the type II BMP receptor Wishful Thinking (Wit) in the motoneuron. These observations support a model where the muscle signals back to the innervating motoneuron's nucleus to activate presynaptic programs necessary for synaptic growth and activity-dependent plasticity. Molecular genetic gain- and loss-of-function studies show that genes involved in NMJ growth and plasticity, including the adenylyl cyclase Rutabaga, the Ig-CAM Fasciclin II, the transcription factor AP-1 (Fos/Jun), and the adhesion protein Neurexin, all depend critically on the canonical BMP pathway for their effects. By contrast, elevated expression of Lar, a receptor protein tyrosine phosphatase found to be necessary for activity-dependent plasticity, rescued the phenotypes associated with the loss of Mad signaling. We also find that synaptic structure and function develop using genetically separable, BMP-dependent mechanisms. Although synaptic growth depended on Lar and the early, transient BMP signal, the maturation of neurotransmitter release was independent of Lar and required later, ongoing BMP signaling.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/genética , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Sinapsis/genética , Transmisión Sináptica/fisiología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
Dev Dyn ; 242(7): 861-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23606306

RESUMEN

BACKGROUND: The process of axon guidance is important in establishing functional neural circuits. The differential expression of cell-autonomous axon guidance factors is crucial for allowing axons of different neurons to take unique trajectories in response to spatially and temporally restricted cell non-autonomous axon guidance factors. A key motivation in the field is to provide adequate explanations for axon behavior with respect to the differential expression of these factors. RESULTS: We report the characterization of a predicted secreted semaphorin family member, semaphorin2b (Sema-2b) in Drosophila embryonic axon guidance. Misexpression of Sema-2b in neurons causes highly penetrant axon guidance phenotypes in specific longitudinal and motoneuron pathways; however, expression of Sema-2b in muscles traversed by these motoneurons has no effect on axon guidance. In Sema-2b loss-of-function embryos, specific motoneuron and interneuron axon pathways display guidance defects. Specific visualization of the neurons that normally express Sema-2b reveals that this neuronal cohort is strongly affected by Sema-2b loss-of-function alleles. CONCLUSIONS: While secreted semaphorins have been implicated as cell non-autonomous chemorepellants in a variety of contexts, here we report previously undescribed Sema-2b loss-of-function and misexpression phenotypes that are consistent with a cell-autonomous role for Sema-2b.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Neuronas/citología , Neuronas/metabolismo , Semaforinas/metabolismo , Animales , Axones/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Semaforinas/genética
17.
PLoS Genet ; 6(10): e1001172, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21124729

RESUMEN

Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Invertebrados/genética , Interferencia de ARN , Proteínas del Complejo SMN/genética , Análisis de Varianza , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Evolución Molecular , Femenino , Genoma de los Helmintos/genética , Genoma de los Insectos/genética , Humanos , Invertebrados/crecimiento & desarrollo , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Mutación , Pupa/genética , Pupa/crecimiento & desarrollo , Proteínas del Complejo SMN/fisiología
18.
iScience ; 26(1): 105732, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590162

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.

19.
Neuron ; 57(3): 339-44, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18255027

RESUMEN

The formation of the nervous system during embryonic development is controlled by a complex network of signaling pathways which ensure proper migration and targeting of neuronal projections. Likewise, the function of the adult nervous system relies on complex dynamic interactions between the presynaptic and postsynaptic terminals. Here, we review recent advances in understanding the molecular pathways underlying these seemingly distinct processes. These studies reveal that the conserved E3 ubiquitin ligase PHR (PAM, highwire Rpm-1) controls a regulatory protein degradation pathway essential both for axonal targeting during embryonic development as well as for the proper formation and function of neuron muscular junctions (NMJ).


Asunto(s)
Conos de Crecimiento/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Drosophila , Modelos Biológicos
20.
Nat Methods ; 6(12): 897-903, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19915559

RESUMEN

MicroRNAs are important regulators of gene expression, yet the functional outputs of most microRNA-target interactions remain elusive. Here we introduce the Drosophila melanogaster microRNA sponge (miR-SP) as a powerful transgenic technology to dissect the function of every microRNA with precise spatiotemporal resolution. miR-SPs can be used to characterize tissue-specific microRNA loss-of-function phenotypes, define the spatial regulation of their effectors and uncover interactions between microRNAs and other genes. Using themiR-SP system, we identified an essential role of the conserved microRNA miR-8, in neuromuscular junction formation. Tissue-specific silencing revealed that postsynaptic activity of miR-8 is important for normal neuromuscular junction morphogenesis. Given that miR-SPs rely on a bipartite modular expression system, they could be used to elucidate the endogenous function of microRNAs in any species in which conditional expression can be achieved.


Asunto(s)
Drosophila melanogaster/genética , MicroARNs/genética , Animales , Animales Modificados Genéticamente , MicroARNs/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA