Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(1): 46-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273825

RESUMEN

Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (∼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Sistema Enzimático del Citocromo P-450 , Ratones , Animales , Humanos , Ratones Transgénicos , Citocromo P-450 CYP2B6/genética , Sistema Enzimático del Citocromo P-450/genética , Transgenes/genética , Modelos Animales de Enfermedad , Mapeo Cromosómico/métodos , Hidrocarburo de Aril Hidroxilasas/genética
2.
Exp Eye Res ; 229: 109419, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806671

RESUMEN

Graphene-based nanomaterials (GBNs) are widely used due to their chemical and physical properties for multiple commercial and environmental applications. From an occupational health perspective, there is concern regarding the effects of inhalation on the respiratory system, and many studies have been conducted to study inhalation impacts on lung. Similar to the respiratory system, the eyes may also be exposed to GBNs and thus impacted. In this study, immortalized human corneal epithelial (hTCEpi) cells and rabbit corneal fibroblasts (RCFs) were used to investigate the toxicity of eight types of GBN: graphene oxide (GO; 400 nm), GO (1 µm), partially reduced graphene oxide (PRGO; 400 nm), reduced graphene oxide (RGO; 400 nm), RGO (2 µm), graphene (110 nm), graphene (140 nm), and graphene (1 µm). We next examined the effects of these GBNs on hTCEpi cell migration. We also determined whether the expression of α-smooth muscle actin (αSMA), a myofibroblast marker, is altered by the GBNs using RCFs. We found that RGO (400 nm) and RGO (2 µm) were highly toxic to hTCEPi cells and RCFs meanwhile, PRGO (400 nm) was toxic only to hTCEpi cells. In addition, PRGO (400 nm), RGO (400 nm), and RGO (2 µm) inhibited hTCEpi cell migration and significantly increased αSMA mRNA expression. Further study in vivo is required to determine if RGO nanomaterials delay corneal epithelial healing and induce scar formation.


Asunto(s)
Grafito , Nanoestructuras , Animales , Humanos , Conejos , Grafito/toxicidad , Córnea , Cicatrización de Heridas
3.
Toxicol Pathol ; 50(6): 763-775, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35768951

RESUMEN

Engineered silver nanoparticles (AgNPs), including silver silicate nanoparticles (Ag-SiO2 NPs), are used in a wide variety of medical and consumer applications. Inhaled AgNPs have been found to translocate to the olfactory bulb (OB) after inhalation and intranasal instillation. However, the biological effects of Ag-SiO2 NPs and their potential nose-to-brain transport have not been evaluated. The present study assessed whether inhaled Ag-SiO2 NPs can elicit microglial activation in the OB. Adult Sprague-Dawley rats inhaled aerosolized Ag-SiO2 NPs at a concentration of 1 mg/ml for 6 hours. On day 0, 1, 7, and 21 post-exposure, rats were necropsied and OB were harvested. Immunohistochemistry on OB tissues were performed with anti-ionized calcium-binding adapter molecule 1 and heme oxygenase-1 as markers of microglial activation and oxidative stress, respectively. Aerosol characterization indicated Ag-SiO2 NPs were sufficiently aerosolized with moderate agglomeration and high-efficiency deposition in the nasal cavity and olfactory epithelium. Findings suggested that acute inhalation of Ag-SiO2 NPs elicited transient and differential microglial activation in the OB without significant microglial recruitment or oxidative stress. The delayed and differential pattern of microglial activation in the OB implied that inhaled Ag-SiO2 may have translocated to the central nervous system via intra-neuronal pathways.


Asunto(s)
Nanopartículas del Metal , Plata , Aerosoles/análisis , Aerosoles/metabolismo , Aerosoles/farmacología , Animales , Calcio , Hemo-Oxigenasa 1/análisis , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Nanopartículas del Metal/toxicidad , Microglía/metabolismo , Bulbo Olfatorio , Ratas , Ratas Sprague-Dawley , Roedores/metabolismo , Silicatos/análisis , Silicatos/metabolismo , Silicatos/toxicidad , Dióxido de Silicio/toxicidad , Plata/toxicidad
4.
Regul Toxicol Pharmacol ; 116: 104761, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32768664

RESUMEN

4-Methylimidazole (4MEI) is a contaminant in food and consumer products. Pulmonary toxicity and carcinogenicity following chronic dietary exposures to 4MEI is a regulatory concern based on previous rodent studies. This study examined acute pulmonary toxicity in B6C3F1 mice from 6 h to 5 days after oral gavage with a single dose of 150 mg/kg 4MEI, a double dose delivered 6 h apart, or vehicle controls. Oral gavage of 150 mg/kg naphthalene, a prototypical Club cell toxicant, was used as a positive control. Intrapulmonary conducting airway cytotoxicity was assessed in fixed-pressure inflated lungs using qualitative histopathology scoring, quantitative morphometric measurement of vacuolated and exfoliating epithelial cells, and immunohistochemistry. 4MEI treatment did not change markers of cytotoxicity including the mass of vacuolated epithelium, the thickness of the epithelium, or the distributions of epithelial proteins: secretoglobin 1A1, proliferating cell nuclear antigen, calcitonin gene-related peptide, and myeloperoxidase. 4MEI and vehicle controls caused slight cytotoxicity with rare vacuolization of the epithelium relative to the severe bronchiolar epithelial cell toxicity found in the naphthalene exposed mice at terminal bronchioles, intrapulmonary airways, or airway bifurcations. In summary, 4MEI caused minimal airway epithelial toxicity without characteristic Club Cell toxicity when compared to naphthalene, a canonical Club Cell toxicant.


Asunto(s)
Contaminantes Ambientales/toxicidad , Imidazoles/toxicidad , Naftalenos/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Administración Oral , Animales , Femenino , Masculino , Ratones , Mucosa Respiratoria/patología
5.
Nucl Instrum Methods Phys Res B ; 438: 119-123, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30631217

RESUMEN

Naphthalene (NA) is a respiratory toxicant and possible human carcinogen. NA is a ubiquitous combustion product and significant component of jet fuel. The National Toxicology Program found that NA forms tumors in two species, in rats (nose) and mice (lung). However, it has been argued that NA does not pose a cancer risk to humans because NA is bioactivated by cytochrome P450 monooxygenase enzymes that have very high efficiency in the lung tissue of rodents but low efficiency in the lung tissue of humans. It is thought that NA carcinogenesis in rodents is related to repeated cycles of lung epithelial injury and repair, an indirect mechanism. Repeated in vivo exposure to NA leads to development of tolerance, with the emergence of cells more resistant to NA insult. We tested the hypothesis that tolerance involves reduced susceptibility to the formation of NA-DNA adducts. NA-DNA adduct formation in tolerant mice was examined in individual, metabolically-active mouse airways exposed ex vivo to 250 µΜ 14C-NA. Ex vivo dosing was used since it had been done previously and the act of creating a radioactive aerosol of a potential carcinogen posed too many safety and regulatory obstacles. Following extensive rinsing to remove unbound 14C-NA, DNA was extracted and 14C-NA-DNA adducts were quantified by AMS. The tolerant mice appeared to have slightly lower NA-DNA adduct levels than non-tolerant controls, but intra-group variations were large and the difference was statistically insignificant. It appears the tolerance may be more related to other mechanisms, such as NA-protein interactions in the airway, than DNA-adduct formation.

7.
Toxicol Pathol ; 44(5): 673-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27025955

RESUMEN

Silver nanoparticle (Ag NP) production methods are being developed and refined to produce more uniform Ag NPs through chemical reactions involving silver salt solutions, solvents, and capping agents to control particle formation. These chemical reactants are often present as contaminants and/or coatings on the Ag NPs, which could alter their interactions in vivo. To determine pulmonary effects of citrate-coated Ag NPs, Sprague-Dawley rats were exposed once nose-only to aerosolized Ag NPs (20 nm [C20] or 110 nm [C110] Ag NPs) for 6 hr. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, 21, and 56 days postexposure for analyses. Inhalation of Ag NPs, versus citrate buffer control, produced significant inflammatory and cytotoxic responses that were measured in BALF cells and supernatant. At day 7, total cells, protein, and lactate dehydrogenase were significantly elevated in BALF, and peak histopathology was noted after C20 or C110 exposure versus control. At day 21, BALF polymorphonuclear cells and tissue inflammation were significantly greater after C20 versus C110 exposure. By day 56, inflammation was resolved in Ag NP-exposed animals. Overall, results suggest delayed, short-lived inflammatory and cytotoxic effects following C20 or C110 inhalation and potential for greater responses following C20 exposure.


Asunto(s)
Pulmón/patología , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar , Pulmón/efectos de los fármacos , Masculino , Nanopartículas del Metal/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Plata/administración & dosificación
8.
Am J Respir Crit Care Med ; 192(1): 11-6, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25945507

RESUMEN

There is growing evidence that a number of pulmonary diseases affect women differently and with a greater degree of severity than men. The causes for such sex disparity is the focus of this Blue Conference Perspective review, which explores basic cellular and molecular mechanisms, life stages, and clinical outcomes based on environmental, sociocultural, occupational, and infectious scenarios, as well as medical health beliefs. Owing to the breadth of issues related to women and lung disease, we present examples of both basic and clinical concepts that may be the cause for pulmonary disease disparity in women. These examples include those diseases that predominantly affect women, as well as the rising incidence among women for diseases traditionally occurring in men, such as chronic obstructive pulmonary disease. Sociocultural implications of pulmonary disease attributable to biomass burning and infectious diseases among women in low- to middle-income countries are reviewed, as are disparities in respiratory health among sexual minority women in high-income countries. The implications of the use of complementary and alternative medicine by women to influence respiratory disease are examined, and future directions for research on women and respiratory health are provided.


Asunto(s)
Salud Global , Disparidades en el Estado de Salud , Disparidades en Atención de Salud , Enfermedades Pulmonares/etiología , Salud de la Mujer , Terapias Complementarias , Femenino , Accesibilidad a los Servicios de Salud , Humanos , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/terapia , Factores de Riesgo , Factores Sexuales , Sexualidad , Factores Socioeconómicos
9.
J Phys Chem A ; 119(2): 281-9, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25517690

RESUMEN

Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.


Asunto(s)
Pulmón/química , Nanopartículas del Metal/química , Compuestos de Plata/química , Animales , Exposición por Inhalación , Masculino , Tamaño de la Partícula , Ratas Sprague-Dawley , Dióxido de Silicio/química , Factores de Tiempo , Espectroscopía de Absorción de Rayos X
10.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L471-81, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25063800

RESUMEN

Children are uniquely susceptible to ozone because airway and lung growth continue for an extensive period after birth. Early-life exposure of the rhesus monkey to repeated ozone cycles results in region-specific disrupted airway/lung growth, but the mediators and mechanisms are poorly understood. Substance P (SP), neurokinin-1 receptor (NK-1R); and nuclear receptor Nur77 (NR4A1) are signaling pathway components involved in ozone-induced cell death. We hypothesize that acute ozone (AO) exposure during postnatal airway development disrupts SP/NK-1R/Nur77 pathway expression and that these changes correlate with increased ozone-induced cell death. Our objectives were to 1) spatially define the normal development of the SP/NK-1R/Nur77 pathway in conducting airways; 2) compare how postnatal age modulates responses to AO exposure; and 3) determine how concomitant, episodic ozone exposure modifies age-specific acute responses. Male infant rhesus monkeys were assigned at age 1 mo to two age groups, 2 or 6 mo, and then to one of three exposure subgroups: filtered air (FA), FA+AO (AO: 8 h/day × 2 days), or episodic biweekly ozone exposure cycles (EAO: 8 h/day × 5 days/14-day cycle+AO). O3 = 0.5 ppm. We found that 1) ozone increases SP/NK-1R/Nur77 pathway expression in conducting airways, 2) an ozone exposure cycle (5 days/cycle) delivered early at age 2 mo resulted in an airway that was hypersensitive to AO exposure at the end of 2 mo, and 3) continued episodic exposure (11 cycles) resulted in an airway that was hyposensitive to AO exposure at 6 mo. These observations collectively associate with greater overall inflammation and epithelial cell death, particularly in early postnatal (2 mo), distal airways.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/metabolismo , Oxidantes Fotoquímicos/efectos adversos , Ozono/efectos adversos , Receptores de Neuroquinina-1/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Células Epiteliales/patología , Pulmón/crecimiento & desarrollo , Pulmón/patología , Macaca mulatta , Masculino , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Oxidantes Fotoquímicos/farmacología , Ozono/farmacología , Mucosa Respiratoria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA