Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Semin Cell Dev Biol ; 159-160: 27-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38309142

RESUMEN

The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of Apollo and Artemis, two extremely young genes (<200,000 years) in Drosophila melanogaster, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and protein sequence evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, Apollo is essential for male fitness but detrimental to female fitness, while Artemis is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.


Asunto(s)
Drosophila melanogaster , Caracteres Sexuales , Animales , Masculino , Femenino , Drosophila melanogaster/metabolismo , Gametogénesis/genética , Selección Genética , Evolución Molecular , Evolución Biológica
2.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668300

RESUMEN

Novel phenotypes are increasingly recognized to have evolved by co-option of conserved genes into new developmental contexts, yet the process by which co-opted genes modify existing developmental programs remains obscure. Here, we provide insight into this process by characterizing the role of co-opted doublesex in butterfly wing color pattern development. dsx is the master regulator of insect sex differentiation but has been co-opted to control the switch between discrete nonmimetic and mimetic patterns in Papilio alphenor and its relatives through the evolution of novel mimetic alleles. We found dynamic spatial and temporal expression pattern differences between mimetic and nonmimetic butterflies throughout wing development. A mimetic color pattern program is switched on by a pulse of dsx expression in early pupal development that causes acute and long-term differential gene expression, particularly in Wnt and Hedgehog signaling pathways. RNAi suggested opposing, novel roles for these pathways in mimetic pattern development. Importantly, Dsx co-option caused Engrailed, a primary target of Hedgehog signaling, to gain a novel expression domain early in pupal wing development that is propagated through mid-pupal development to specify novel mimetic patterns despite becoming decoupled from Dsx expression itself. Altogether, our findings provide multiple views into how co-opted genes can both cause and elicit changes to conserved networks and pathways to result in development of novel, adaptive phenotypes.


Asunto(s)
Mariposas Diurnas , Proteínas Hedgehog , Animales , Mariposas Diurnas/genética , Alelos , Frecuencia Cardíaca , Fenotipo
3.
PLoS Genet ; 17(7): e1009654, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242211

RESUMEN

It is a conventionally held dogma that the genetic basis underlying development is conserved in a long evolutionary time scale. Ample experiments based on mutational, biochemical, functional, and complementary knockdown/knockout approaches have revealed the unexpectedly important role of recently evolved new genes in the development of Drosophila. The recent progress in the genome-wide experimental testing of gene effects and improvements in the computational identification of new genes (< 40 million years ago, Mya) open the door to investigate the evolution of gene essentiality with a phylogenetically high resolution. These advancements also raised interesting issues in techniques and concepts related to phenotypic effect analyses of genes, particularly of those that recently originated. Here we reported our analyses of these issues, including reproducibility and efficiency of knockdown experiment and difference between RNAi libraries in the knockdown efficiency and testing of phenotypic effects. We further analyzed a large data from knockdowns of 11,354 genes (~75% of the Drosophila melanogaster total genes), including 702 new genes (~66% of the species total new genes that aged < 40 Mya), revealing a similarly high proportion (~32.2%) of essential genes that originated in various Sophophora subgenus lineages and distant ancestors beyond the Drosophila genus. The transcriptional compensation effect from CRISPR knockout were detected for highly similar duplicate copies. Knockout of a few young genes detected analogous essentiality in various functions in development. Taken together, our experimental and computational analyses provide valuable data for detection of phenotypic effects of genes in general and further strong evidence for the concept that new genes in Drosophila quickly evolved essential functions in viability during development.


Asunto(s)
Evolución Molecular , Duplicación de Gen/genética , Genes Esenciales/genética , Animales , Evolución Biológica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen/métodos , Genómica , Genotipo , Modelos Genéticos , Mutación , Fenotipo , Filogenia , Reproducibilidad de los Resultados
4.
BMC Biol ; 21(1): 104, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170114

RESUMEN

BACKGROUND: Gene duplication events are critical for the evolution of new gene functions. Aristaless is a major regulator of distinct developmental processes. It is most known for its role during appendage development across animals. However, more recently other distinct biological functions have been described for this gene and its duplicates. Butterflies and moths have two copies of aristaless, aristaless1 (al1) and aristaless2 (al2), as a result of a gene duplication event. Previous work in Heliconius has shown that both copies appear to have novel functions related to wing color patterning. Here we expand our knowledge of the expression profiles associated with both ancestral and novel functions of Al1 across embryogenesis and wing pigmentation. Furthermore, we characterize Al2 expression, providing a comparative framework between gene copies within the same species, allowing us to understand the origin of new functions following gene duplication. RESULTS: Our work shows that the expression of both Al1 and Al2 is associated with the ancestral function of sensory appendage (leg, mouth, spines, and eyes) development in embryos. Interestingly, Al1 exhibits higher expression earlier in embryogenesis while the highest levels of Al2 expression are shifted to later stages of embryonic development. Furthermore, Al1 localization appears extranuclear while Al2 co-localizes tightly with nuclei earlier, and then also expands outside the nucleus later in development. Cellular expression of Al1 and Al2 in pupal wings is broadly consistent with patterns observed during embryogenesis. We also describe, for the first time, how Al1 localization appears to correlate with zones of anterior/posterior elongation of the body during embryonic growth, showcasing a possible new function related to Aristaless' previously described role in appendage extension. CONCLUSIONS: Overall, our data suggest that while both gene copies play a role in embryogenesis and wing pigmentation, the duplicates have diverged temporally and mechanistically across those functions. Our study helps clarify principles behind sub-functionalization and gene expression evolution associated with developmental functions following gene duplication events.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Pigmentación/genética , Alas de Animales/metabolismo
5.
Mol Biol Evol ; 37(5): 1295-1305, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31930401

RESUMEN

Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.


Asunto(s)
Evolución Biológica , Mimetismo Biológico/genética , Mariposas Diurnas/genética , Introgresión Genética , Selección Genética , Animales , Femenino , Genoma de los Insectos , Haplotipos , Masculino , América del Norte , Filogeografía
6.
Annu Rev Genet ; 47: 307-33, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24050177

RESUMEN

Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.


Asunto(s)
Evolución Molecular , Genes , Animales , Encéfalo/embriología , Drosophila melanogaster/genética , Predicción , Dosificación de Gen , Duplicación de Gen , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Transferencia de Gen Horizontal , Genes de Insecto , Genes de Plantas , Estructuras Genéticas , Humanos , Mamíferos/genética , Modelos Genéticos , Fenotipo , Filogenia , ARN no Traducido/fisiología , Recombinación Genética , Selección Genética , Caracteres Sexuales , Transcripción Genética
7.
Proc Biol Sci ; 288(1942): 20202192, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33434461

RESUMEN

Sexual dimorphism is a major component of morphological variation across the tree of life, but the mechanisms underlying phenotypic differences between sexes of a single species are poorly understood. We examined the population genomics and biogeography of the common palmfly Elymnias hypermnestra, a dual mimic in which female wing colour patterns are either dark brown (melanic) or bright orange, mimicking toxic Euploea and Danaus species, respectively. As males always have a melanic wing colour pattern, this makes E. hypermnestra a fascinating model organism in which populations vary in sexual dimorphism. Population structure analysis revealed that there were three genetically distinct E. hypermnestra populations, which we further validated by creating a phylogenomic species tree and inferring historical barriers to gene flow. This species tree demonstrated that multiple lineages with orange females do not form a monophyletic group, and the same is true of clades with melanic females. We identified two single nucleotide polymorphisms (SNPs) near the colour patterning gene WntA that were significantly associated with the female colour pattern polymorphism, suggesting that this gene affects sexual dimorphism. Given WntA's role in colour patterning across Nymphalidae, E. hypermnestra females demonstrate the repeatability of the evolution of sexual dimorphism.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Femenino , Masculino , Filogenia , Polimorfismo Genético , Caracteres Sexuales , Alas de Animales
9.
BMC Biol ; 18(1): 84, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620168

RESUMEN

BACKGROUND: Heliconius butterflies are widely distributed across the Neotropics and have evolved a stunning array of wing color patterns that mediate Müllerian mimicry and mating behavior. Their rapid radiation has been strongly influenced by hybridization, which has created new species and allowed sharing of color patterning alleles between mimetic species pairs. While these processes have frequently been observed in widespread species with contiguous distributions, many Heliconius species inhabit patchy or rare habitats that may strongly influence the origin and spread of species and color patterns. Here, we assess the effects of historical population fragmentation and unique biology on the origins, genetic health, and color pattern evolution of two rare and sparsely distributed Brazilian butterflies, Heliconius hermathena and Heliconius nattereri. RESULTS: We assembled genomes and re-sequenced whole genomes of eight H. nattereri and 71 H. hermathena individuals. These species harbor little genetic diversity, skewed site frequency spectra, and high deleterious mutation loads consistent with recent population bottlenecks. Heliconius hermathena consists of discrete, strongly isolated populations that likely arose from a single population that dispersed after the last glacial maximum. Despite having a unique color pattern combination that suggested a hybrid origin, we found no genome-wide evidence that H. hermathena is a hybrid species. However, H. hermathena mimicry evolved via introgression, from co-mimetic Heliconius erato, of a small genomic region upstream of the color patterning gene cortex. CONCLUSIONS: Heliconius hermathena and H. nattereri population fragmentation, potentially driven by historical climate change and recent deforestation, has significantly reduced the genetic health of these rare species. Our results contribute to a growing body of evidence that introgression of color patterning alleles between co-mimetic species appears to be a general feature of Heliconius evolution.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/genética , Ecosistema , Genoma , Hibridación Genética , Animales , Brasil , Femenino , Masculino , Secuenciación Completa del Genoma
10.
Mol Biol Evol ; 36(12): 2842-2853, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504750

RESUMEN

Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.


Asunto(s)
Mimetismo Biológico/genética , Mariposas Diurnas/genética , Evolución Molecular , Filogenia , Pigmentación/genética , Animales , Femenino , Masculino , Polimorfismo Genético
11.
Genome Res ; 24(4): 629-38, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24407956

RESUMEN

Recent studies have revealed key roles of noncoding RNAs in sex-related pathways, but little is known about the evolutionary forces acting on these noncoding RNAs. Profiling the transcriptome of Drosophila melanogaster with whole-genome tiling arrays found that 15% of male-biased transcribed fragments are intergenic noncoding RNAs (incRNAs), suggesting a potentially important role for incRNAs in sex-related biological processes. Statistical analysis revealed a paucity of male-biased incRNAs and coding genes on the X chromosome, suggesting that similar evolutionary forces could be affecting the genomic organization of both coding and noncoding genes. Expression profiling across germline and somatic tissues further suggested that both male meiotic sex chromosome inactivation (MSCI) and sexual antagonism could contribute to the chromosomal distribution of male-biased incRNAs. Comparative sequence analysis showed that the evolutionary age of male-biased incRNAs is a significant predictor of their chromosomal locations. In addition to identifying abundant sex-biased incRNAs in the fly genome, our work unveils a global picture of the complex interplay between noncoding RNAs and sexual chromosome evolution.


Asunto(s)
Drosophila melanogaster/genética , Genes Ligados a X/genética , ARN no Traducido/genética , Caracteres Sexuales , Animales , ADN Intergénico/genética , Femenino , Genoma de los Insectos , Masculino , Meiosis/genética , Cromosoma X/genética , Inactivación del Cromosoma X/genética
12.
Mol Ecol ; 24(13): 3485-500, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26011293

RESUMEN

The mycoplasma-related endobacteria (MRE), representing a recently discovered lineage of Mollicutes, are widely distributed across arbuscular mycorrhizal fungi (AMF, Glomeromycota). AMF colonize roots of most terrestrial plants and improve plant mineral nutrient uptake in return for plant-assimilated carbon. The role of MRE in the biology of their fungal hosts is unknown. To start characterizing this association, we assessed partitioning of MRE genetic diversity within AMF individuals and across the AMF phylogeographic range. We further used molecular evolution patterns to make inferences about MRE codivergence with AMF, their lifestyle and antiquity of the Glomeromycota-MRE association. While we did not detect differentiation between MRE derived from different continents, high levels of diversity were apparent in MRE populations within AMF host individuals. MRE exhibited significant codiversification with AMF over ecological time and the absence of codivergence over evolutionary time. Moreover, genetic recombination was evident in MRE. These patterns indicate that, while MRE transmission is predominantly vertical, their complex intrahost populations are likely generated by horizontal transmission and recombination. Based on predictions of evolutionary theory, we interpreted these observations as a suggestion that MRE may be antagonists of AMF. Finally, we detected a marginally significant signature of codivergence of MRE with Glomeromycota and the Endogone lineage of Mucoromycotina, implying that the symbiosis between MRE and fungi may predate the divergence between these two groups of fungi.


Asunto(s)
Evolución Molecular , Variación Genética , Mycoplasma/genética , Micorrizas , Simbiosis , Glomeromycota , Haplotipos , Datos de Secuencia Molecular , Filogenia , Filogeografía , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN
13.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260248

RESUMEN

The development of complex phenotypes requires the coordinated action of many genes across space and time, yet many species have evolved the ability to develop multiple discrete, alternate phenotypes1-3. Such polymorphisms are often controlled by supergenes, sets of tightly-linked mutations in one or more loci that function together to produce a complex phenotype4. Although theories of supergene evolution are well-established, the mutations that cause functional differences between supergene alleles remain essentially unknown. doublesex is the master regulator of insect sexual differentiation but functions as a supergene in multiple Papilio swallowtail butterflies, where divergent dsx alleles control development of discrete non-mimetic or mimetic female wing color patterns5-7. Here we demonstrate that the functional elements of the mimetic allele in Papilio alphenor are six new cis-regulatory elements (CREs) spread across 150 kb that are bound by DSX itself. Our findings provide experimental support to classic supergene theory and suggest that the evolution of auto-regulation may provide a simple route to supergene origination and to the co-option of pleiotropic genes into new developmental roles.

14.
BMC Evol Biol ; 12: 169, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22950647

RESUMEN

BACKGROUND: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlötterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. RESULTS: We reanalyzed the dataset published by Metta and Schlötterer and found several issues that led us to a different conclusion. In particular, Metta and Schlötterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schlötterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlötterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. CONCLUSIONS: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.


Asunto(s)
Cromosomas de Insectos/genética , Drosophila/genética , Duplicación de Gen , Genes de Insecto/genética , Animales , Drosophila/clasificación , Femenino , Expresión Génica , Genes Ligados a X/genética , Masculino , Mutagénesis Insercional , Ovario/metabolismo , Retroelementos/genética , Transcripción Reversa , Selección Genética , Factores Sexuales , Testículo/metabolismo , Cromosoma X/genética
15.
Mol Biol Evol ; 27(11): 2474-86, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20566475

RESUMEN

Arbuscular mycorrhizal (AM) fungi in the phylum Glomeromycota colonize roots of the majority of land plants and assist them in the uptake of mineral nutrients in exchange for plant-assimilated carbon. In the absence of sexual reproductive structures and with asexual spore morphology conserved since the Ordovician, Glomeromycota may be one of the oldest eukaryotic lineages that rely predominantly on asexual reproduction for gene transmission. Clonal population structure detected in the majority of AM fungi examined to date supports this hypothesis. However, evidence of recombination found in few local populations suggests that genetic exchanges may be more common in these organisms than is currently recognized. To explore the significance of clonal expansion versus genetic recombination in the life history of modern Glomeromycota, we examined the global population of a cosmopolitan fungus Glomus etunicatum and made inferences about the population structure and the occurrence of recombination in the history of this species. We sampled eight loci from 84 isolates. We found that although the global population of G. etunicatum showed a pattern of significant differentiation, several haplotypes had a broad geographic distribution spanning multiple continents. Molecular variation among the sampled isolates indicated an overwhelmingly clonal population structure and suggested that clonal expansion plays an important role in the ecological success of modern Glomeromycota. In contrast, a pattern of homoplasy consistent with a history of recombination suggested that gene exchanges are not completely absent from the life history of these organisms, although they are likely to be very rare.


Asunto(s)
Glomeromycota/crecimiento & desarrollo , Glomeromycota/genética , Micorrizas/crecimiento & desarrollo , Micorrizas/genética , Recombinación Genética , Reproducción Asexuada/genética , Secuencia de Bases , Células Clonales , Análisis por Conglomerados , Ecosistema , Genes Fúngicos/genética , Genética de Población , Geografía , Glomeromycota/aislamiento & purificación , Haplotipos/genética , Datos de Secuencia Molecular , Mutación/genética , Micorrizas/aislamiento & purificación , Filogenia , Dinámica Poblacional
16.
Nat Ecol Evol ; 2(4): 705-712, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29459709

RESUMEN

Males and females have different fitness optima but share the vast majority of their genomes, causing an inherent genetic conflict between the two sexes that must be resolved to achieve maximal population fitness. We show that two tandem duplicate genes found specifically in Drosophila melanogaster are sexually antagonistic, but rapidly evolved sex-specific functions and expression patterns that mitigate their antagonistic effects. We use copy-specific knockouts and rescue experiments to show that Apollo (Apl) is essential for male fertility but detrimental to female fertility, in addition to its important role in development, while Artemis (Arts) is essential for female fertility but detrimental to male fertility. Further analyses show that Apl and Arts have essential roles in spermatogenesis and oogenesis. These duplicates formed ~200,000 years ago, underwent a strong selective sweep and lost most expression in the antagonized sex. These data provide direct evidence that gene duplication allowed rapid mitigation of sexual conflict by allowing Apl and Arts to evolve essential sex-specific reproductive functions and complementary expression in male and female gonads.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Evolución Molecular , Gametogénesis/genética , Genes Duplicados/genética , beta Carioferinas/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Caracteres Sexuales , beta Carioferinas/metabolismo
17.
Nat Genet ; 50(1): 20-25, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29255259

RESUMEN

Mutations that add, subtract, rearrange, or otherwise refashion genome structure often affect phenotypes, although the fragmented nature of most contemporary assemblies obscures them. To discover such mutations, we assembled the first new reference-quality genome of Drosophila melanogaster since its initial sequencing. By comparing this new genome to the existing D. melanogaster assembly, we created a structural variant map of unprecedented resolution and identified extensive genetic variation that has remained hidden until now. Many of these variants constitute candidates underlying phenotypic variation, including tandem duplications and a transposable element insertion that amplifies the expression of detoxification-related genes associated with nicotine resistance. The abundance of important genetic variation that still evades discovery highlights how crucial high-quality reference genomes are to deciphering phenotypes.


Asunto(s)
Drosophila melanogaster/genética , Variación Genética , Animales , Variaciones en el Número de Copia de ADN , Mutación INDEL , Fenotipo , Polimorfismo de Nucleótido Simple
18.
Curr Biol ; 28(21): 3469-3474.e4, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30415702

RESUMEN

Neotropical Heliconius butterflies display a diversity of warningly colored wing patterns, which serve roles in both Müllerian mimicry and mate choice behavior. Wing pattern diversity in Heliconius is controlled by a small number of unlinked, Mendelian "switch" loci [1]. One of these, termed the K locus, switches between yellow and white color patterns, important mimicry signals as well as mating cues [2-4]. Furthermore, mate preference behavior is tightly linked to this locus [4]. K controls the distribution of white versus yellow scales on the wing, with a dominant white allele and a recessive yellow allele. Here, we combine fine-scale genetic mapping, genome-wide association studies, gene expression analyses, population and comparative genomics, and genome editing with CRISPR/Cas9 to characterize the molecular basis of the K locus in Heliconius and to infer its evolutionary history. We show that white versus yellow color variation in Heliconius cydno is due to alternate haplotypes at a putative cis-regulatory element (CRE) downstream of a tandem duplication of the homeodomain transcription factor aristaless. Aristaless1 (al1) and aristaless2 (al2) are differentially regulated between white and yellow wings throughout development with elevated expression of al1 in developing white wings, suggesting a role in repressing pigmentation. Consistent with this, knockout of al1 causes white wings to become yellow. The evolution of wing color in this group has been marked by retention of the ancestral yellow color in many lineages, a single origin of white coloration in H. cydno, and subsequent introgression of white color from H. cydno into H. melpomene.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas/fisiología , Proteínas de Insectos/genética , Preferencia en el Apareamiento Animal , Pigmentos Biológicos/metabolismo , Alas de Animales/fisiología , Animales , Mariposas Diurnas/genética , Color , Proteínas de Insectos/metabolismo
19.
J Genomics ; 2: 64-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25031657

RESUMEN

Phenotypic differences between males and females of sexually dimorphic species are caused in large part by differences in gene expression between the sexes, most of which occurs in the gonads. To accurately identify genes differentially expressed between males and females in Drosophila, we sequenced the testis and ovary transcriptomes of D. yakuba, D. pseudoobscura, and D. ananassae and used them to identify sex-biased genes in the latter two species. We highlight the increased sensitivity and improved power of sex-biased gene detection methods when using our testis/ovary data versus male and female whole body transcriptome data. We thus provide a resource specifically designed to accurately identify and characterize sex-biased genes across Drosophila. This dataset is available through NCBI GEO accession GSE52058.

20.
Evolution ; 67(1): 207-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23289573

RESUMEN

Arbuscular mycorrhizal fungi (phylum Glomeromycota) are among the oldest and most successful symbionts of land plants. With no evidence of sexual reproduction, their evolutionary success is inconsistent with the prediction that asexual taxa are vulnerable to extinction due to accumulation of deleterious mutations. To explore why Glomeromycota defy this prediction, we studied ribosomal RNA (rRNA) gene evolution in the Claroideoglomus lineage and estimated effective population size, N(e) , in C. etunicatum. We found that rRNA genes of these fungi exhibit unusual and complex patterns of molecular evolution. In C. etunicatum, these patterns can be collectively explained by an unexpectedly large N(e) combined with imperfect genome-wide and population-level rRNA gene repeat homogenization. The mutations accumulated in rRNA gene sequences indicate that natural selection is effective at purging deleterious mutations in the Claroideoglomus lineage, which is also consistent with the large N(e) of C. etunicatum. We propose that in the near absence of recombination, asexual reproduction involving massively multinucleate spores typical for Glomeromycota is responsible for the improved efficacy of selection relative to drift. We postulate that large effective population sizes contribute to the evolutionary longevity of Glomeromycota.


Asunto(s)
Evolución Molecular , Genes de ARNr/genética , Variación Genética , Glomeromycota/genética , Flujo Genético , Mutación , Recombinación Genética , Reproducción Asexuada , Selección Genética , Esporas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA