Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(40): 28024-28032, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27711371

RESUMEN

The sulfur ion concentration dependent morphological evolution and its subsequent effect on photo-electrochemical properties of chemically synthesized CdS thin films have been systematically investigated. The plausible growth mechanism for the morphological evolution of CdS thin films due to a change in sulfur ion concentration has been proposed. Scanning electron micrographs (SEMs) reveal that the morphology of CdS thin films has been changed from spherical grains to vertically aligned nanoflakes by systematic control of sulfur ion concentration. This article elucidates the astute relationships between precursor concentrations, reaction rate and morphological evolution. The X-ray diffraction (XRD) patterns reveal the formation of hexagonal wurtzite CdS thin films with the preferred (002) orientation for CdS nanoflakes, which is further supported by the analysis of the high resolution transmission electron micrographs (HRTEMs). Optical absorption studies show a red shift in the absorption edge with an increase in sulfur concentration. The beneficial role of nanoflake formation is easily reflected in the photo-electrochemical performance. Improved solar cell performances are observed for CdS nanoflakes grown with a sulfur to cadmium ion concentration ratio of 4 (S : Cd = 4).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA