RESUMEN
OBJECTIVES: Endovascular treatment (EVT) has become the standard of care for acute ischemic stroke. Despite successful recanalization, a limited subset of patients benefits from the new treatment. Human MRI studies have shown that during removal of the thrombus, a shower of microclots is released from the initial thrombus, possibly causing new ischemic lesions. The aim of the current study is to quantify tissue damage following microembolism. MATERIALS AND METHODS: In a rat model, microembolism was generated by injection of a mixture of polystyrene fluorescent microspheres (15, 25 and 50 µm in diameter). The animals were killed at three time-points: day 1, 3 or 7. AMIRA and IMARIS software was used for 3D reconstruction of brain structure and damage, respectively. CONCLUSIONS: Microembolism induces ischemia, hypoxia and infarction. Infarcted areas persist, but hypoxic regions recover over time suggesting that repair processes in the brain rescue the regions at risk.
Asunto(s)
Infarto Encefálico/etiología , Isquemia Encefálica/etiología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Hipoxia Encefálica/etiología , Embolia Intracraneal/complicaciones , Oxígeno/sangre , Animales , Infarto Encefálico/sangre , Infarto Encefálico/patología , Infarto Encefálico/fisiopatología , Isquemia Encefálica/sangre , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hipoxia Encefálica/sangre , Hipoxia Encefálica/patología , Hipoxia Encefálica/fisiopatología , Embolia Intracraneal/sangre , Embolia Intracraneal/patología , Embolia Intracraneal/fisiopatología , Masculino , Ratas Wistar , Recuperación de la Función , Factores de TiempoRESUMEN
In sickle cell disease (SCD), oxygen delivery is impaired due to anemia, especially during times of increased metabolic demand, and cerebral blood flow (CBF) must increase to meet changing physiologic needs. But hyperemia limits cerebrovascular reserve (CVR) and ischemic risk prevails despite elevated CBF. The cerebral metabolic rate of oxygen (CMRO2 ) directly reflects oxygen supply and consumption and may therefore be more insightful than flow-based CVR measures for ischemic risk in SCD. We hypothesized that adults with SCD have impaired CMRO2 at rest and that a vasodilatory challenge with acetazolamide would improve CMRO2 . CMRO2 was calculated from CBF and oxygen extraction fraction (OEF), measured with arterial spin labeling and T2 -prepared tissue relaxation with inversion recovery (T2 -TRIR) MRI. We studied 36 adults with SCD without a clinical history of overt stroke, and nine healthy controls. As expected, CBF was higher in patients with SCD versus controls (mean ± SD: 74 ± 16 versus 46 ± 5 mL/100 g/min, P < .001), resulting in similar oxygen delivery (SCD: 377 ± 67 versus controls: 368 ± 42 µmol O2 /100g/min, P = .69). OEF was lower in patients versus controls (27 ± 4 versus 35 ± 4%, P < .001), resulting in lower CMRO2 in patients versus controls (102 ± 24 versus 127 ± 20 µmol O2 /100g/min, P = .002). After acetazolamide, CMRO2 declined further in patients (P < .01) and did not decline significantly in controls (P = .78), indicating that forcing higher CBF worsened oxygen utilization in SCD patients. This lower CMRO2 could reflect variation between healthy and unhealthy vascular beds in terms of dilatory capacity and resistance whereby dysfunctional vessels become more oxygen-deprived, hence increasing the risk of localized ischemia.
Asunto(s)
Anemia de Células Falciformes/sangre , Encéfalo/metabolismo , Hipoxia Encefálica/etiología , Oxígeno/metabolismo , Acetazolamida/farmacología , Acetazolamida/uso terapéutico , Adulto , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/etiología , Isquemia Encefálica/prevención & control , Circulación Cerebrovascular/efectos de los fármacos , Estudios Transversales , Femenino , Hemoglobina Fetal/análisis , Humanos , Hidroxiurea/uso terapéutico , Hipoxia Encefálica/diagnóstico por imagen , Hipoxia Encefálica/tratamiento farmacológico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Consumo de Oxígeno , Insuficiencia del Tratamiento , Vasodilatadores/farmacología , Vasodilatadores/uso terapéutico , Adulto JovenRESUMEN
Background and Purpose- We developed a rat model of silent brain infarcts based on microsphere infusion and investigated their impact on perfusion and tissue damage. Second, we studied the extent and mechanisms of perfusion recovery. Methods- At day 0, 15 µm fluorescent microspheres were injected into the right common carotid artery of F344 rats. At days 1, 7, or 28, the brain was removed, cut in 100-µm cryosections, and processed for immunofluorescent staining and analysis. Results- Injection of microspheres caused mild and transient damage to the treated hemisphere, with a decrease in perfused capillary volume at day 1, as compared with the untreated hemisphere. At day 1 but not at days 7 and 28, we observed IgG staining outside of the vessels, indicating vessel leakage. All microspheres were located inside the lumen of the vessels at day 1, whereas the vast majority (≈80%) of the microspheres were extravascular at day 7, and 100% at day 28. This was accompanied by restoration of perfused capillary volume. Conclusions- Microspheres cause mild and transient damage, and effective extravasation mechanisms exist in the brain to clear microsized emboli from the vessels.
Asunto(s)
Infarto Encefálico , Microesferas , Animales , Infarto Encefálico/inducido químicamente , Infarto Encefálico/metabolismo , Infarto Encefálico/patología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Endogámicas F344RESUMEN
Sickle cell disease is characterized by chronic hemolytic anemia and vascular inflammation, which can diminish the vasodilatory capacity of the small resistance arteries, making them less adept at regulating cerebral blood flow. Autoregulation maintains adequate oxygen delivery, but when vasodilation is maximized, the low arterial oxygen content can lead to ischemia and silent cerebral infarcts. We used magnetic resonance imaging of cerebral blood flow to quantify whole-brain cerebrovascular reserve in 36 adult patients with sickle cell disease (mean age, 31.9±11.3 years) and 11 healthy controls (mean age, 37.4±15.4 years), and we used high-resolution 3D FLAIR magnetic resonance imaging to determine the prevalence of silent cerebral infarcts. Cerebrovascular reserve was calculated as the percentage change in cerebral blood flow after a hemodynamic challenge with acetazolamide. Co-registered lesion maps were used to demonstrate prevalent locations for silent cerebral infarcts. Cerebral blood flow was elevated in patients with sickle cell disease compared to controls (median [interquartile range]: 82.8 [20.1] vs 51.3 [4.8] mL/100g/min, P<0.001). Cerebral blood flow was inversely associated with age, hemoglobin, and fetal hemoglobin, and correlated positively with bilirubin, and LDH, indicating that cerebral blood flow may reflect surrogates of hemolytic rate. Cerebrovascular reserve in sickle cell disease was decreased by half compared to controls (34.1 [33.4] vs 69.5 [32.4] %, P<0.001) and was associated with hemoglobin and erythrocyte count indicating anemia-induced hemodynamic adaptations. In total, 29/36 patients (81%) and 5/11 controls (45%) had silent cerebral infarcts (median volume of 0.34 vs 0.02 mL, P=0.03). Lesions were preferentially located in the borderzone. In conclusion, patients with sickle cell disease have a globally reduced cerebrovascular reserve as determined by arterial spin labeling with acetazolamide and reflects anemia-induced impaired vascular function in sickle cell disease. This study was registered at clinicaltrials.gov identifier 02824406.
Asunto(s)
Acetazolamida/administración & dosificación , Anemia de Células Falciformes , Circulación Cerebrovascular/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Angiografía por Resonancia Magnética , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/fisiopatología , Infarto Cerebral/sangre , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/fisiopatología , Femenino , Hemoglobina Fetal/metabolismo , Humanos , Masculino , Persona de Mediana EdadRESUMEN
NEW FINDINGS: What is the topic of this review? In this symposium report, we review the glymphatic clearance from the brain. What advances does it highlight? Evaluation of the evidence indicates that cerebrospinal fluid flows along paravascular spaces at the surface of the brain. However, bulk flow along penetrating arteries into the brain, followed by exit along veins, requires further confirmation. Clearance from the brain, based on mixing, might provide an alternative explanation for experimental findings. ABSTRACT: The interstitial fluid of the brain provides the environment for proper neuronal function. Maintenance of the volume and composition of interstitial fluid requires regulation of the influx and removal of water, ions, nutritive and waste products. The recently described glymphatic pathway might contribute to some of these functions. It is proposed that cerebrospinal fluid enters the brain via paravascular spaces along arteries, mixes with interstitial fluid, and leaves the brain via paravascular spaces along veins. In this symposium report, we review the glymphatic concept, its concerns, and alternative views on interstitial fluid-cerebrospinal fluid exchange.
Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Líquido Extracelular/fisiología , Sistema Glinfático/fisiología , Animales , Velocidad del Flujo Sanguíneo/fisiología , Humanos , Hipertensión/fisiopatologíaRESUMEN
Stroke risk in children with sickle cell disease (SCD) is currently assessed with routine transcranial Doppler ultrasound (TCD) measurements of blood velocity in the Circle of Willis (CoW). However, there is currently no biomarker with proven prognostic value in adult patients. Four-dimensional (4D) flow magnetic resonance imaging (MRI) may improve risk profiling based on intracranial haemodynamics. We conducted neurovascular 4D flow MRI and blood sampling in 69 SCD patients [median age 15 years (interquartile range, IQR: 12-50)] and 14 healthy controls [median age 21 years (IQR: 18-43)]. We measured velocity, flow, lumen area and endothelial shear stress (ESS) in the CoW. SCD patients had lower haematocrit and viscosity, and higher velocity, flow and lumen area, with lower ESS compared to healthy controls. We observed significant age-related decline in haemodynamic 4D flow parameters; velocity (Spearman's ρ = -0·36 to -0·61), flow (ρ = -0·26 to -0·52) and ESS (ρ = -0·14 to -0·54) in SCD patients. Further analysis in only adults showed that velocity values were similar in SCD patients compared to healthy controls, but that the additional 4D flow parameters, flow and lumen area, were higher, and ESS lower, in the SCD group. Our data suggest that 4D flow MRI may identify adult patients with an increased stroke risk more accurately than current TCD-based velocity.
Asunto(s)
Anemia de Células Falciformes/fisiopatología , Circulación Cerebrovascular , Hemodinámica , Imagen por Resonancia Magnética , Adolescente , Adulto , Factores de Edad , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/patología , Velocidad del Flujo Sanguíneo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Casos y Controles , Niño , Femenino , Hematócrito , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Viscosidad , Adulto JovenRESUMEN
Baseline assessment of functional stenosis severity has been proposed as a practical alternative to hyperemic indices. However, intact autoregulation mechanisms may affect intracoronary hemodynamics. The aim of this study was to investigate the effect of changes in aortic pressure (Pa) and heart rate (HR) on baseline coronary hemodynamics and functional stenosis assessment. In 15 patients (55 ± 3% diameter stenosis) Pa, intracoronary pressure (Pd) and flow velocity were obtained at control, and during atrial pacing at 120 bpm, increased Pa (+30 mmHg) with intravenous phenylephrine (PE), and elevated Pa while pacing at sinus heart rate (PE + sHR). We derived rate pressure product (RPP = systolic Pa × HR), baseline microvascular resistance (BMR = Pd/velocity), and stenosis resistance [BSR = (Pa - Pd)/velocity] as well as whole-cycle Pd/Pa. Tachycardia (120 ± 1 bpm) raised RPP by 74% vs. CONTROL: Accordingly, BMR decreased by 27% (p < 0.01) and velocity increased by 36% (p < 0.05), while Pd/Pa decreased by 0.05 ± 0.02 (p < 0.05) and BSR remained similar to control. Raising Pa to 121 ± 3 mmHg (PE) with concomitant reflex bradycardia increased BMR by 26% (p < 0.001) at essentially unchanged RPP and velocity. Consequently, BSR and Pd/Pa were only marginally affected. During PE + sHR, velocity increased by 21% (p < 0.01) attributable to a 46% higher RPP (p < 0.001). However, BMR, BSR, and Pd/Pa remained statistically unaffected. Nonetheless, the interventions tended to increase functional stenosis severity, causing Pd/Pa and BSR of borderline lesions to cross the diagnostic threshold. In conclusion, coronary microvascular adaptation to physiological conditions affecting metabolic demand at rest influences intracoronary hemodynamics, which may lead to altered basal stenosis indices used for clinical decision-making.
Asunto(s)
Adaptación Fisiológica/fisiología , Presión Arterial/fisiología , Estenosis Coronaria/diagnóstico , Estenosis Coronaria/fisiopatología , Frecuencia Cardíaca/fisiología , Circulación Coronaria/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios RetrospectivosRESUMEN
Development of collateral vessels, arteriogenesis, may protect against tissue ischemia, however, quantitative data on this process remain scarce. We have developed a technique for replicating the entire arterial network of ischemic rat hindlimbs in three dimensions (3D) based on vascular casting and automated sequential cryo-imaging. Various dilutions of Batson's No. 17 with methyl methacrylate were evaluated in healthy rats, with further protocol optimization in ischemic rats. Penetration of the resin into the vascular network greatly depended on dilution; the total length of casted vessels below 75 µm was 13-fold higher at 50% dilution compared with the 10% dilution. Dilutions of 25-30%, with transient clamping of the healthy iliac artery, were optimal for imaging the arterial network in unilateral ischemia. This protocol completely filled the lumina of small arterioles and collateral vessels. These appeared as thin anastomoses in healthy legs and increasingly larger vessels during ligation (median diameter 1 week: 63 µm, 4 weeks: 127 µm). The presented combination of quality casts with high-resolution cryo-imaging enables automated, detailed 3D analysis of collateral adaptation, which furthermore can be combined with co-registered 3D distributions of fluorescent molecular imaging markers reflecting biological activity or perfusion.
Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/patología , Miembro Posterior/irrigación sanguínea , Miembro Posterior/diagnóstico por imagen , Imagenología Tridimensional/métodos , Isquemia/diagnóstico por imagen , Isquemia/patología , Animales , Arteriolas/diagnóstico por imagen , Arteriolas/patología , Molde por Corrosión , Resinas Epoxi , Técnicas Histológicas/métodos , Ligadura , Masculino , Metilmetacrilatos/química , Ratas , Ratas Sprague-DawleyRESUMEN
Thrombospondin-4 (TSP-4) is a multidomain calcium-binding protein that has both intracellular and extracellular functions. As an extracellular matrix protein, it is involved in remodeling processes. Previous work showed that, in the cardiovascular system, TSP-4 expression is induced in the heart in response to experimental pressure overload and infarction injury. Intracellularly, it mediates the endoplasmic reticulum stress response in the heart. In this study, we explored the role of TSP-4 in hypertension. For this purpose, wild-type and TSP-4 knockout (Thbs4(-/-)) mice were treated with angiotensin II (ANG II). Hearts from ANG II-treated Thbs4(-/-) mice showed an exaggerated hypertrophic response. Interestingly, aortas from Thbs4(-/-) mice treated with ANG II showed a high incidence of aneurysms. In resistance arteries, ANG II-treated wild-type mice showed impaired endothelial-dependent relaxation. This was not observed in ANG II-treated Thbs4(-/-) mice or in untreated controls. No differences were found in the passive pressure-diameter curves or stress-strain relationships, although ANG II-treated Thbs4(-/-) mice showed a tendency to be less stiff, associated with thicker diameters of the collagen fibers as revealed by electron microscopy. We conclude that TSP-4 plays a role in hypertension, affecting cardiac hypertrophy, aortic aneurysm formation, as well as endothelial-dependent relaxation in resistance arteries.
Asunto(s)
Aneurisma de la Aorta/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/metabolismo , Arterias Mesentéricas/metabolismo , Trombospondinas/deficiencia , Resistencia Vascular , Vasodilatación , Angiotensina II , Animales , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/inducido químicamente , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/patología , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Colágeno/metabolismo , Dilatación Patológica , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/ultraestructura , Predisposición Genética a la Enfermedad , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/fisiopatología , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiopatología , Arterias Mesentéricas/ultraestructura , Ratones Noqueados , Microscopía Electrónica , Fenotipo , Trombospondinas/genética , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacologíaRESUMEN
OBJECTIVE: Intracerebral hemorrhages (ICHs) are common in patients with cerebral venous thrombosis (CVT). We examined whether small juxtacortical hemorrhages (JCHs) are characteristic for CVT and studied their radiological and pathological properties. METHODS: We identified all patients with CVT and an ICH at baseline admitted between 2000 and 2011 (prospectively from July 2006). JCH was defined as a hemorrhage (diameter < 20mm) located in the white matter just below the cortex. To determine the specificity of JCHs for CVT, we examined the frequency of JCHs in a control group of patients of similar age with an ICH not related to CVT. RESULTS: Of 114 patients with CVT, 53 had an ICH. JCHs were present in 14 of the 53 (26%). The remaining 39 had other kinds of hemorrhages. Papilledema was more common among patients with a JCH compared to patients with other types of ICHs (44% vs 9%, p = 0.01). All patients with a JCH except 1 had thrombosis of the superior sagittal sinus, compared to 49% of patients with CVT and other kinds of hemorrhages (p = 0.004). Reanalysis of all imaging data and histopathologic analysis in 1 patient showed that JCHs are located near the U-fibers and that they follow the curvature of the cortex. Among 196 control patients (spontaneous ICH, not caused by CVT), only 3 patients had a JCH. One of these 3 appeared on re-examination of all imaging results to have had CVT. INTERPRETATION: Small nontraumatic JCHs are a characteristic feature of CVT and are rarely encountered in other conditions.
Asunto(s)
Hemorragia Cerebral/etiología , Trombosis Intracraneal/complicaciones , Trombosis de la Vena/complicaciones , Adulto , Hemorragia Cerebral/diagnóstico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Tomógrafos Computarizados por Rayos XRESUMEN
Vasospasm is known to contribute to delayed cerebral ischemia following subarachnoid hemorrhage (SAH). We hypothesized that vasospasm initiates structural changes within the vessel wall, possibly aggravating ischemia and leading to resistance to vasodilator treatment. We therefore investigated the effect of blood on cerebral arteries with respect to contractile activation and vascular remodeling. In vitro experiments on rodent basilar and middle cerebral arteries showed a gradual contraction in response to overnight exposure to blood. After incubation with blood, a clear inward remodeling was found, reducing the caliber of the passive vessel. The transglutaminase inhibitor L682.777 fully prevented this remodeling. Translation of the in vitro findings to an in vivo SAH model was attempted in rats, using both a single prechiasmatic blood injection model and a double cisterna magna injection model, and in mice, using a single prechiasmatic blood injection. However, we found no substantial changes in active or passive biomechanical properties in vivo. We conclude that extravascular blood can induce matrix remodeling in cerebral arteries, which reduces vascular caliber. This remodeling depends on transglutaminase activity. However, the current rodent SAH models do not permit in vivo confirmation of this mechanism.
Asunto(s)
Arteria Cerebral Media/fisiopatología , Hemorragia Subaracnoidea/fisiopatología , Remodelación Vascular , Vasoespasmo Intracraneal/fisiopatología , Animales , Fenómenos Biomecánicos , Velocidad del Flujo Sanguíneo , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Arteria Cerebral Media/efectos de los fármacos , Arteria Cerebral Media/enzimología , Arteria Cerebral Media/patología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas Wistar , Flujo Sanguíneo Regional , Hemorragia Subaracnoidea/enzimología , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/patología , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/genética , Transglutaminasas/metabolismo , Remodelación Vascular/efectos de los fármacos , Vasoconstricción , Vasoespasmo Intracraneal/enzimología , Vasoespasmo Intracraneal/genética , Vasoespasmo Intracraneal/patologíaRESUMEN
PURPOSE: To assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. MATERIALS AND METHODS: Volumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized and the influence of spatial resolution and segmentation was evaluated. Subsequently, 2D cine PC-MRI data in the carotid and the aorta at varying spatial resolutions were obtained (n = 2) and compared with the simulations. Finally, volumetric WSS was calculated in 3D cine PC-MRI data of the carotid bifurcation and the aorta (n = 6). RESULTS: We found that at least 8 voxels across the diameter are required to obtain a WSS accuracy of 5% and a precision of 20% in software phantoms. Systematic WSS quantification errors up to 40% were found in the case of segmentation errors. The in vivo measurements using 2D cine PC-MRI exhibited WSS increase at increasing spatial resolutions, similar to the results in software phantoms. Volumetric WSS vectors were successfully calculated in three healthy carotid bifurcations and aortas. CONCLUSION: The effects of resolution and segmentation on the accuracy and precision of the WSS algorithm were quantified. We were able to calculate volumetric WSS in the carotid bifurcation and the aorta.
Asunto(s)
Aorta/fisiología , Arterias Carótidas/fisiología , Imagen por Resonancia Cinemagnética/métodos , Algoritmos , Velocidad del Flujo Sanguíneo , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Resistencia al CorteRESUMEN
Adhesion G protein-coupled receptors (aGPCRs) are two-subunit molecules, consisting of an adhesive extracellular α subunit that couples noncovalently to a seven-transmembrane ß subunit. The cooperation between the two subunits and the effect of endogenous ligands on the functioning of aGPCRs is poorly understood. In this study, we investigated the interaction between the pan-leukocyte aGPCR CD97 and its ligand CD55. We found that leukocytes from CD55-deficient mice express significantly increased levels of cell surface CD97 that normalized after transfer into wild-type mice because of contact with CD55 on both leukocytes and stromal cells. Downregulation of both CD97 subunits occurred within minutes after first contact with CD55 in vivo, which correlated with an increase in plasma levels of soluble CD97. In vitro, downregulation of CD97 on CD55-deficient leukocytes cocultured with wild-type blood cells was strictly dependent on shear stress. In vivo, CD55-mediated downregulation of CD97 required an intact circulation and was not observed on cells that lack contact with the blood stream, such as microglia. Notably, de novo ligation of CD97 did not activate signaling molecules constitutively engaged by CD97 in cancer cells, such as ERK and protein kinase B/Akt. We conclude that CD55 downregulates CD97 surface expression on circulating leukocytes by a process that requires physical forces, but based on current evidence does not induce receptor signaling. This regulation can restrict CD97-CD55-mediated cell adhesion to tissue sites.
Asunto(s)
Antígenos CD55/metabolismo , Leucocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Antígenos CD55/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G , Transducción de Señal , Células del Estroma/metabolismoRESUMEN
Wall shear stress (WSS) is involved in many pathophysiological processes related to cardiovascular diseases, and knowledge of WSS may provide vital information on disease progression. WSS is generally quantified with computational fluid dynamics (CFD), but can also be calculated using phase contrast MRI (PC-MRI) measurements. In this study, our objectives were to calculate WSS on the entire luminal surface of human carotid arteries using PC-MRI velocities (WSSMRI ) and to compare it with WSS based on CFD (WSSCFD ). Six healthy volunteers were scanned with a 3 T MRI scanner. WSSCFD was calculated using a generalized flow waveform with a mean flow equal to the mean measured flow. WSSMRI was calculated by estimating the velocity gradient along the inward normal of each mesh node on the luminal surface. Furthermore, WSS was calculated for a down-sampled CFD velocity field mimicking the MRI resolution (WSSCFDlowres ). To ensure minimum temporal variation, WSS was analyzed only at diastole. The patterns of WSSCFD and WSSMRI were compared by quantifying the overlap between low, medium and high WSS tertiles. Finally, WSS directions were compared by calculating the angles between the WSSCFD and WSSMRI vectors. WSSMRI magnitude was found to be lower than WSSCFD (0.62 ± 0.18 Pa versus 0.88 ± 0.30 Pa, p < 0.01) but closer to WSSCFDlowres (0.56 ± 0.18 Pa, p < 0.01). WSSMRI patterns matched well with those of WSSCFD. The overlap area was 68.7 ± 4.4% in low and 69.0 ± 8.9% in high WSS tertiles. The angles between WSSMRI and WSSCFD vectors were small in the high WSS tertiles (20.3 ± 8.2°), but larger in the low WSS tertiles (65.6 ± 17.4°). In conclusion, although WSSMRI magnitude was lower than WSSCFD , the spatial WSS patterns at diastole, which are more relevant to the vascular biology, were similar. PC-MRI-based WSS has potential to be used in the clinic to indicate regions of low and high WSS and the direction of WSS, especially in regions of high WSS.
Asunto(s)
Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Hidrodinámica , Imagen por Resonancia Cinemagnética/métodos , Estrés Mecánico , Adulto , Velocidad del Flujo Sanguíneo , Circulación Coronaria , Diástole , Salud , HumanosRESUMEN
INTRODUCTION: Head movement during CT brain perfusion (CTP) acquisition can deteriorate the accuracy of CTP analysis. Most CTP software packages can only correct in-plane movement and are limited to small ranges. The purpose of this study is to validate a novel 3D correction method for head movement during CTP acquisition. METHODS: Thirty-five CTP datasets that were classified as defective due to head movement were included in this study. All CTP time frames were registered with non-contrast CT data using a 3D rigid registration method. Location and appearance of ischemic area in summary maps derived from original and registered CTP datasets were qualitative compared with follow-up non-contrast CT. A quality score (QS) of 0 to 3 was used to express the degree of agreement. Furthermore, experts compared the quality of both summary maps and assigned the improvement score (IS) of the CTP analysis, ranging from -2 (much worse) to 2 (much better). RESULTS: Summary maps generated from corrected CTP significantly agreed better with appearance of infarct on follow-up CT with mean QS 2.3 versus mean QS 1.8 for summary maps from original CTP (P = 0.024). In comparison to original CTP data, correction resulted in a quality improvement with average IS 0.8: 17 % worsened (IS = -2, -1), 20 % remained unchanged (IS = 0), and 63 % improved (IS = +1, +2). CONCLUSION: The proposed 3D movement correction improves the summary map quality for CTP datasets with severe head movement.
Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Imagenología Tridimensional , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Movimientos de la Cabeza , Humanos , Masculino , Persona de Mediana EdadRESUMEN
OBJECT: While pseudo-continuous arterial spin labeling (pCASL) is a promising imaging technique to visualize cerebral blood flow, it is also (acoustically) very loud during labeling. In this paper, we reduced the labeling loudness on our scanner by increasing the interval between the RF pulses from the literature standard of 1.0 ms. We also propose recommendations to reduce the loudness on scanners of the same type at other sites. MATERIALS AND METHODS: First, the sound pressure level (SPL) was both simulated and measured as a function of the labeling interval (1.0-1.8 ms) and longitudinal position in the scanner (-10 to +10 cm, relative to isocenter). Subsequently, we selected the labeling interval with the lowest overall SPL for the "SPL-optimized" pCASL sequence. Nine volunteers were scanned to compare raw signal intensity, temporal signal-to-noise ratio (tSNR) and labeling efficiency between the SPL-optimized and the standard PCASL sequence. RESULTS: Sound pressure level measurements on our scanner showed that loudness was reduced by 6.5 dB at the approximate location of the ear by adjusting the labeling interval to 1.4 ms. Furthermore, image quality was not affected, since no significant differences in signal intensity, tSNR and labeling efficiency were observed. CONCLUSION: By increasing the pCASL labeling interval, acoustic noise in the pCASL sequence was reduced with 6.5 dB, while image quality was preserved.
Asunto(s)
Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Angiografía por Resonancia Magnética/instrumentación , Angiografía por Resonancia Magnética/métodos , Ruido/prevención & control , Algoritmos , Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/anatomía & histología , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de SpinRESUMEN
Inward remodeling of small arteries occurs after prolonged vasoconstriction, low blood flow, and in several models of hypertension. The cross-linking enzyme, transglutaminases 2 (TG2), is able to induce inward remodeling and stiffening of arteries. The activity of TG2 is dependent on its conformation, which can be open or closed, and on its redox state. Several factors have been shown to be involved in modulating TG2 activity, including Ca(2+) and GTP/GDP concentrations, as well as the redox state of the environment. This review introduces the hypothesis that mechanical force could be involved in regulating the activity of TG2 during inward remodeling by promoting its open and reduced active state. Several aspects of TG2, such as its structure and localization, are assessed in order to provide arguments that support the hypothesis. We conclude that a direct activation of TG2 by mechanical force exerted by smooth muscle cells may explain the link between smooth muscle activation and inward remodeling, as observed in several physiological and pathological conditions.
Asunto(s)
Arterias/enzimología , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Animales , Arterias/fisiología , Calcio/metabolismo , Adhesión Celular/fisiología , Disulfuros/metabolismo , Activación Enzimática , Fibronectinas/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Ratones , Músculo Liso/citología , Músculo Liso/fisiología , Conformación Proteica/efectos de los fármacos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Estrés Mecánico , Talina/metabolismo , Transglutaminasas/antagonistas & inhibidores , Vasoconstricción/fisiología , Vasodilatación/fisiología , Vinculina/metabolismoRESUMEN
Small artery remodeling may involve a shift in the diameter-dependent force generating capacity of smooth muscle cells (SMC). We tested to what extent and under which conditions such contractile plasticity occurs. Rat mesenteric arteries were mounted on isometric myographs. Active diameter-tension relations were determined after application of several stimuli for 16 or 40 h at 40 or 110% of the passive diameter at 100 mm Hg. At 40%, 16-hour incubation with endothelin-1 (ET-1) but not U46619 shifted force capacity towards smaller diameters. Inflammatory cytokines (TNF-α, IL-1ß, IFN-γ), TGF-ß or serum neither induced such shift nor augmented the effect of ET-1. The ET-1-mediated change was not affected by superoxide dismutase and catalase. Inward matrix remodeling in the presence of ET-1 was slower, occurring after 40 h. Arteries maintained at 110% showed a shift of force capacity to larger diameters, which was prevented by ET-1 but not by U46619. In the active but not the passive state, SMC had altered nuclear lengths after incubation at 40%. These data demonstrate contractile plasticity in small arteries, where chronic strain is an outward drive and specifically ET-1 an inward drive, acting through mechanisms that do not seem to relate to oxidative stress, inflammatory pathways or major reorganization of the SMC.
Asunto(s)
Citocinas/farmacología , Arterias Mesentéricas/fisiología , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Vasoconstrictores/farmacología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Núcleo Celular/ultraestructura , Endotelina-1/farmacología , Inflamación , Masculino , Arterias Mesentéricas/anatomía & histología , Músculo Liso Vascular/ultraestructura , Estrés Oxidativo , Ratas , Ratas WistarRESUMEN
PURPOSE: To determine the clinical feasibility of arterial spin labeling (ASL) on a 1T open bore scanner. MATERIALS AND METHODS: First, the optimal postlabeling delay (PLD) at 1T was determined (n = 5), with and without vascular crushing. Second, the effect of different labeling approaches (pseudo-continuous ASL [pCASL] vs. pulsed ASL [PASL]), background suppression (BSup) and readout options (GRASE vs. EPI) was investigated (n = 9). Each effect was quantified by calculating the signal-to-noise ratio (SNR), convergence, and number of significant gray matter (GM) voxels in the ASL images. Finally, an example of an obese volunteer who could not have been scanned in a cylindrical scanner is presented. RESULTS: The optimal PLDs were found to be 1300 msec for pCASL with and without vascular crushing. pCASL labeling outperformed PASL labeling in terms of convergence, anatomical correspondence between GM and perfusion maps, and SNR (P < 0.05). BSup appeared to have no additional value on the convergence, anatomical GM correspondence, and SNR (P > 0.05). EPI readout yielded a slightly better convergence, while the SNR of the GRASE readout was higher (P < 0.05). CONCLUSION: ASL on 1T is clinically feasible using state-of-the-art sequences that were primarily developed for higher field strengths.