Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Microbiol ; 114(1): 127-139, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32187735

RESUMEN

In Caulobacter crescentus the combined action of chromosome replication and the expression of DNA methyl-transferase CcrM at the end of S-phase maintains a cyclic alternation between a full- to hemi-methylated chromosome. This transition of the chromosomal methylation pattern affects the DNA-binding properties of the transcription factor GcrA that controls the several key cell cycle functions. However, the molecular mechanism by which GcrA and methylation are linked to transcription is not fully elucidated yet. Using a combination of cell biology, genetics, and in vitro analysis, we deciphered how GcrA integrates the methylation pattern of several S-phase expressed genes to their transcriptional output. We demonstrated in vitro that transcription of ctrA from the P1 promoter in its hemi-methylated state is activated by GcrA, while in its fully methylated state GcrA had no effect. Further, GcrA and methylation together influence a peculiar distribution of creS transcripts, encoding for crescentin, the protein responsible for the characteristic shape of Caulobacter cells. This gene is duplicated at the onset of chromosome replication and the two hemi-methylated copies are spatially segregated. Our results indicated that GcrA transcribed only the copy where coding strand is methylated. In vitro transcription assay further substantiated this finding. As several of the cell cycle-regulated genes are also under the influence of methylation and GcrA-dependent transcriptional regulation, this could be a mechanism responsible for maintaining the gene transcription dosage during the S-phase.


Asunto(s)
Caulobacter crescentus/genética , Metilación de ADN/genética , Regulación Bacteriana de la Expresión Génica/genética , Transcripción Genética/genética , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regiones Promotoras Genéticas/genética , Factor sigma/genética
2.
J Cell Biochem ; 116(11): 2445-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25923058

RESUMEN

Nitric Oxide (NO) has been involved in both intra- and extra-cellular signaling pathways in a wide range of organisms, and can be detected in some reproductive tissues. Based upon previous results reporting that NO-donor SNAP (s-nitroso-n-acetyl penicillamine) promoted the release from the metaphase II-anaphase II block in amphibian eggs, the aim of the present study was to assess the influence of SNAP on the activation of the molecular mechanisms triggering meiotic resumption of Xenopus oocytes, analogous to G2/M transition of the cell cycle. A high concentration of SNAP (2.5 mM) was found to inhibit the appearance of the white spot (meiotic resumption) and promoted alteration of spindle morphogenesis leading to atypical structures lacking bipolarity and correct chromosomes equatorial alignment. The medium acidification (pH = 4) promoted by SNAP specifically impacted the white spot occurrence. However, even when pH was restored to 7.4 in SNAP medium, observed spindles remained atypical (microtubule disorganization), suggesting SNAP impacted spindle assembly regardless of the pH. n-Acetyl-d,l-penicillamine disulfide, a degradation product of SNAP with the same molecular characteristics, albeit without release of NO, yielded spindle assemblies typical of metaphase II suggesting the specificity of NO action on meiotic spindle morphogenesis in Xenopus oocytes.


Asunto(s)
Donantes de Óxido Nítrico/farmacología , Oocitos/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/farmacología , Huso Acromático/efectos de los fármacos , Animales , Cromosomas/metabolismo , Femenino , Meiosis/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Oocitos/citología , Xenopus laevis
3.
Sensors (Basel) ; 14(1): 1140-54, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24434874

RESUMEN

Among biosensors, genetically-encoded FRET-based biosensors are widely used to localize and measure enzymatic activities. Kinases activities are of particular interest as their spatiotemporal regulation has become crucial for the deep understanding of cell fate decisions. This is especially the case for ERK, whose activity is a key node in signal transduction pathways and can direct the cell into various processes. There is a constant need for better tools to analyze kinases in vivo, and to detect even the slightest variations of their activities. Here we report the optimization of the previous ERK activity reporters, EKAR and EKAREV. Those tools are constituted by two fluorophores adapted for FRET experiments, which are flanking a specific substrate of ERK, and a domain able to recognize and bind this substrate when phosphorylated. The latter phosphorylation allows a conformational change of the biosensor and thus a FRET signal. We improved those biosensors with modifications of: (i) fluorophores and (ii) linkers between substrate and binding domain, resulting in new versions that exhibit broader dynamic ranges upon EGF stimulation when FRET experiments are carried out by fluorescence lifetime and ratiometric measurements. Herein, we characterize those new biosensors and discuss their observed differences that depend on their fluorescence properties.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Fosforilación , Transducción de Señal
4.
Cell Cycle ; 13(20): 3232-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485503

RESUMEN

The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.


Asunto(s)
Técnicas Biosensibles , Segregación Cromosómica/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitosis/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Segregación Cromosómica/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Células HeLa , Humanos , Microscopía Confocal , Mitosis/genética
5.
Prog Mol Biol Transl Sci ; 113: 145-216, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23244791

RESUMEN

Biological processes are intrinsically dynamic. Although traditional methods provide valuable insights for the understanding of many biological phenomena, the possibility of measuring, quantifying, and localizing proteins within a cell, a tissue, and even an embryo has revolutionized our train of thoughts and has encouraged scientists to develop molecular tools for the assessment of protein or protein complex dynamics within their physiological context. These ongoing efforts rest on the emergence of biophotonic techniques and the continuous improvement of fluorescent probes, allowing precise and reliable measurements of dynamic cellular functions. The march of the "in vivo biochemistry" has begun, already yielding breathtaking results.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Fosfotransferasas/química , Animales , Técnicas Biosensibles/instrumentación , Proliferación Celular , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Humanos , Fosforilación , Fotones , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA